Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 22(4): 230-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18752309

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm(2)) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control. Half of the eggs in each dose group were then treated with red light once per day through embryonic day 20 (E20). Upon hatching at E21, the kidneys were collected and assayed for glutathione peroxidase, glutathione reductase, catalase, superoxide dimutase, and glutathione-S-transferase activities, as well as reduced glutathione and ATP levels, and lipid peroxidation. TCDD exposure alone suppressed the activity of the antioxidant enzymes, increased lipid peroxidation, and depleted available ATP. The biochemical indicators of oxidative and energy stress in the kidney were reversed by daily phototherapy, restoring ATP and glutathione contents and increasing antioxidant enzyme activities to control levels. Photobiomodulation also normalized the level of lipid peroxidation increased by TCDD exposure. The results of this study suggest that 670 nm photobiomodulation may be useful as a noninvasive treatment for renal injury resulting from chemically induced cellular oxidative and energy stress.


Assuntos
Rim/efeitos dos fármacos , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fototerapia , Dibenzodioxinas Policloradas/toxicidade , Teratogênicos/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Embrião de Galinha , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Rim/anormalidades , Rim/embriologia , Peroxidação de Lipídeos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
2.
J Biochem Mol Toxicol ; 20(6): 271-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17163486

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an acutely toxic anthropogenic chemical. Treatment with a red to near-infrared (630-1000 nm) light-emitting diode (LED) attenuates the toxicant-induced oxidative stress and energy deficit in neuronal cell culture. For this study, fertile chicken (Gallus gallus) eggs were injected once at the start of incubation with sunflower oil vehicle or 200 pg TCDD/g egg (200 parts per trillion), an environmentally relevant dose. Daily LED treatment after TCDD exposure reduced embryonic mortality by 47%. LED treatment of TCDD-exposed eggs also decreased the hepatic oxidized-to-reduced glutathione ratio by 88%. Activities of other hepatic indicators of oxidative stress, such as glutathione reductase and catalase, were increased after LED treatment of TCDD-exposed eggs. Our study demonstrates that 670 nm phototherapy can mitigate the oxidative stress and energy deficit resulting from developmental exposure to TCDD while reducing TCDD-induced embryo mortality. Moreover, LED treatment restores hepatic enzyme activities to control levels in TCDD-exposed embryos. The effective attenuation of TCDD-induced embryo toxicity by LED treatment could extend to mitigating the effects of other teratogens that induce oxidative and energy stress.


Assuntos
Luz , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Dibenzodioxinas Policloradas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Embrião de Galinha , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos da radiação , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/embriologia , Fígado/enzimologia , Fígado/efeitos da radiação , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Fototerapia , Dibenzodioxinas Policloradas/administração & dosagem
4.
Photomed Laser Surg ; 24(3): 410-3, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16875452

RESUMO

OBJECTIVE: We assessed the effect of 670-nm light therapy on growth and hatching kinetics in chickens (Gallus gallus) exposed to dioxin. BACKGROUND DATA: Photobiomodulation has been shown to stimulate signaling pathways resulting in improved energy metabolism, antioxidant production, and cell survival. In ovo treatment with 670-nm light-emitting diode (LED) arrays improves hatching success and increases hatchling size in control chickens. Under conditions where developmental dioxin exposure is above the lethality threshold (100 ppt), phototherapy attenuates dioxin-induced early embryonic death. We hypothesized that 670-nm LED therapy would attenuate dioxin-induced developmental anomalies and increase hatching success. METHODS: Fertile chicken eggs were injected with control oil, 2, 20, or 200 ppt dioxin, or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prior to the start of incubation. Half of the eggs in each dose group were treated once per day from embryonic days 0-20 with 670-nm LED light at a fluence of 4 J/cm2. Hatchling size, organ weights, and energy parameters were compared between dose groups and LED treatment. RESULTS: LED therapy resulted in earlier pip times (small hole created 12-24 h prior to hatch), and increased hatchling size and weight in the 200 ppt dose groups. However, there appears to be an LED-oil interaction within the oil-treated controls that results in longer hatch times and decreased liver weight within the LED control dose groups in comparison to the non-LED control dose groups. CONCLUSION: Size and hatching times suggest that the hatching success and preparedness of chicks developmentally exposed to dioxin concentrations above the lethality threshold is improved by 670-nm LED treatment administered throughout the gestation period, but the relationship may be complicated by an LED-oil interaction.


Assuntos
Embrião de Galinha/embriologia , Dioxinas/toxicidade , Fototerapia , Animais , Galinhas/crescimento & desenvolvimento , Fígado/embriologia , Tamanho do Órgão
5.
Photomed Laser Surg ; 24(2): 121-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16706690

RESUMO

This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as "photobiomodulation," uses light in the far-red to near-infrared region of the spectrum (630-1000 nm) and modulates numerous cellular functions. Positive effects of NIR-light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction.


Assuntos
Raios Infravermelhos/uso terapêutico , Cicatrização/efeitos da radiação , Animais , Embrião de Galinha , Humanos , Técnicas In Vitro , Camundongos , Mitocôndrias/metabolismo , Isquemia Miocárdica/radioterapia , Oxirredução/efeitos da radiação , Ratos
6.
Environ Toxicol Chem ; 25(2): 541-51, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16519318

RESUMO

Necropsy-observable cardiac deformities were evaluated from 283 nestling passerines collected from one reference site and five polychlorinated biphenyl (PCB)-contaminated sites around Bloomington and Bedford, Indiana, USA. Hearts were weighed and assessed on relative scales in three dimensions (height, length, and width) and for externally visible deformities. Heart weights normalized to body weight (heart somatic index) were decreased significantly at the more contaminated sites in both house wren (Troglodytes aedon) and tree swallow (Tachycineta bicolor). Heart somatic indices significantly correlated with log PCB concentrations in Carolina chickadee (Parus carolinesis) and tree swallow and with log 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent values in tree swallow alone. Ventricular length was increased significantly in eastern bluebirds (Sialia sialis) and decreased significantly in Carolina chickadee and tree swallow from contaminated sites versus the reference site. Heart length regressed significantly against the log PCB concentrations (Carolina chickadee and tree swallow) or the square of the PCB concentrations (red-winged blackbird [Agelaius phoeniceus]) in a sibling bird. The deformities that were observed most at the contaminated sites included abnormal tips (pointed, rounded, or flattened), center rolls, macro- and microsurface roughness, ventricular indentations on the ventral or dorsal surface, lateral ventricular notches, visibly thin ventricular walls, and changes in overall heart shape. A pooled heart deformity index regressed significantly against the logged contaminant concentrations for all species except red-winged blackbird. These results indicate that developmental changes in heart morphometrics and shape abnormalities are quantifiable and may be sensitive and useful indicators of PCB-related developmental impacts across many avian species.


Assuntos
Poluentes Ambientais/efeitos adversos , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/veterinária , Passeriformes/anormalidades , Bifenilos Policlorados/efeitos adversos , Animais , Animais Recém-Nascidos , Peso Corporal , Exposição Ambiental , Monitoramento Ambiental , Resíduos Perigosos , Coração/crescimento & desenvolvimento , Passeriformes/crescimento & desenvolvimento
7.
Photomed Laser Surg ; 24(1): 29-32, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16503785

RESUMO

OBJECTIVE: We assessed the effect of 670-nm light therapy on dioxin-induced embryonic mortality in chickens (Gallus gallus). BACKGROUND DATA: Developmental photobiomodulation using 670-nm light-emitting diode (LED) arrays improves hatching success and increases body size in hatchling chickens. Photobiomodulation also stimulates signaling pathways resulting in improved energy metabolism, antioxidant production and cell survival. Dioxin causes embryonic mortality, including increases in the frequency of chicken embryos that pip but can't go to hatch. We hypothesized that 670-nm LED therapy would attenuate dioxin-induced embryo mortality. METHODS: Fertile chicken eggs were injected with control or 2, 20, or 200 ppt 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) prior to the start of incubation. Half of the eggs in each dose group were treated once per day from embryonic days 0-20 with 670-nm LED light at a fluence of 4 J/cm(2). In ovo survival and hatching success were compared between dose groups and LED treatment. RESULTS: LED therapy decreased the embryonic mortality rate by 41%, resulting in increased embryonic survival and improved hatching success in eggs exposed to 200 ppt dioxin. However, at sub-lethal dioxin concentrations and in oil-treated controls, LED therapy slightly increased mortality. CONCLUSION: Overall survivorship and hatching success of chicks developmentally exposed to dioxin concentrations above the lethality threshold (>100 ppt TCDD) is improved by 670-nm LED treatment administered throughout the gestation period, but the relationship may be complicated by an LED-oil interaction.


Assuntos
Embrião de Galinha/crescimento & desenvolvimento , Embrião de Galinha/efeitos da radiação , Fototerapia , Dibenzodioxinas Policloradas/toxicidade , Teratogênicos/toxicidade , Animais
8.
Photomed Laser Surg ; 23(3): 268-72, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15954813

RESUMO

OBJECTIVE: The objective of the present study was to assess the survival and hatching success of chickens (Gallus gallus) exposed in ovo to far-red (670-nm) LED therapy. BACKGROUND DATA: Photobiomodulation by light in the red to near-infrared range (630-1000 nm) using low-energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing and improve recovery from ischemic injury. The mechanism of photobiomodulation at the cellular level has been ascribed to the activation of mitochondrial respiratory chain components resulting in initiation of a signaling cascade that promotes cellular proliferation and cytoprotecton. MATERIALS AND METHODS: Fertile chicken eggs were treated once per day from embryonic days 0-20 with 670-nm LED light at a fluence of 4 J/cm2. In ovo survival and death were monitored by daily candling (after Day 4). RESULTS: We observed a substantial decrease in overall and third-week mortality rates in the light-treated chickens. Overall, there was approximately a 41.5% decrease in mortality rate in the light-treated chickens (NL: 20%; L: 11.8%). During the third week of development, there was a 68.8% decrease in the mortality rate in light-treated chickens (NL: 20%; L: 6.25%). In addition, body weight, crown-rump length, and liver weight increased as a result of the 670-nm phototherapy. Light-treated chickens pipped (broke shell) earlier and had a shorter duration between pip and hatch. CONCLUSION: These results indicate that 670-nm phototherapy by itself does not adversely affect developing embryos and may improve the hatching survival rate.


Assuntos
Embrião de Galinha/efeitos da radiação , Luz , Organogênese/efeitos da radiação , Animais , Peso Corporal , Estatura Cabeça-Cóccix , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...