Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0253838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191849

RESUMO

Bee venom (BV) is the most valuable product harvested from honeybees ($30 - $300 USD per gram) but marginally produced in apiculture. Though widely studied and used in alternative medicine, recent efforts in BV research have focused on its therapeutic and cosmetic applications, for the treatment of degenerative and infectious diseases. The protein and peptide composition of BV is integral to its bioactivity, yet little research has investigated the ecological factors influencing the qualitative and quantitative variations in the BV composition. Bee venom from Apis mellifera ligustica (Apidae), collected over one flowering season of Corymbia calophylla (Myrtaceae; marri) was characterized to test if the protein composition and amount of BV variation between sites is influenced by i) ecological factors (temperature, relative humidity, flowering index and stage, nectar production); ii) management (nutritional supply and movement of hives); and/or iii) behavioural factors. BV samples from 25 hives across a 200 km-latitudinal range in Southwestern Australia were collected using stimulatory devices. We studied the protein composition of BV by mass spectrometry, using a bottom-up proteomics approach. Peptide identification utilised sequence homology to the A. mellifera reference genome, assembling a BV peptide profile representative of 99 proteins, including a number of previously uncharacterised BV proteins. Among ecological factors, BV weight and protein diversity varied by temperature and marri flowering stage but not by index, this latter suggesting that inter and intra-year flowering index should be further explored to better appreciate this influence. Site influenced BV protein diversity and weight difference in two sites. Bee behavioural response to the stimulator device impacted both the protein profile and weight, whereas management factors did not. Continued research using a combination of proteomics, and bio-ecological approaches is recommended to further understand causes of BV variation in order to standardise and improve the harvest practice and product quality attributes.


Assuntos
Venenos de Abelha/análise , Abelhas/química , Ecossistema , Animais , Comportamento Animal , Cromatografia Líquida , Flores/fisiologia , Proteínas de Insetos/análise , Análise de Componente Principal , Estações do Ano , Espectrometria de Massas em Tandem , Austrália Ocidental
3.
Ann Bot ; 122(6): 1061-1073, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30184161

RESUMO

Background and Aims: While there is increasing recognition of Batesian floral mimicry in plants, there are few confirmed cases where mimicry involves more than one model species. Here, we test for pollination by mimicry in Diuris (Orchidaceae), a genus hypothesized to attract pollinators via mimicry of a range of co-occurring pea plants (Faboideae). Methods: Observations of pollinator behaviour were made for Diuris brumalis using arrays of orchid flowers. An analysis of floral traits in the co-flowering community and spectral reflectance measurements were undertaken to test if Di. brumalis and the pea plants showed strong similarity and were likely to be perceived as the same by bees. Pollen removal and fruit-set were recorded at 18 sites over two years to test if fitness of Di. brumalis increased with the abundance of the model species. Key Results: Diuris brumalis shares the pollinator species Trichococolletes capillosus and T. leucogenys (Hymenoptera: Colletidae) with co-flowering Faboideae from the genus Daviesia. On Di. brumalis, Trichocolletes exhibited the same stereotyped food-foraging and mate-patrolling behaviour that they exhibit on Daviesia. Diuris and pea plants showed strong morphological similarity compared to the co-flowering plant community, while the spectral reflectance of Diuris was similar to that of Daviesia spp. Fruit-set and pollen removal of Di. brumalis was highest at sites with a greater number of Daviesia flowers. Conclusions: Diuris brumalis is pollinated by mimicry of co-occurring congeneric Faboideae species. Evidence for mimicry of multiple models, all of which share pollinator species, suggests that this may represent a guild mimicry system. Interestingly, Di. brumalis belongs to a complex of species with similar floral traits, suggesting that this represents a useful system for investigating speciation in lineages that employ mimicry of food plants.


Assuntos
Abelhas/fisiologia , Mimetismo Biológico , Fabaceae/fisiologia , Orchidaceae/fisiologia , Polinização , Animais , Comportamento Alimentar , Comportamento Sexual Animal , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA