Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100942, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38720463

RESUMO

Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop, ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and fertilization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, 915 accessions from 20 countries were gathered, comprising cultivars, major landraces, feral populations and wild progenitor. Based on whole genome resequencing of these accessions, the most comprehensive ramie genomic variation map to date was constructed. Phylogenetic, demographic, and admixture signal detection analyses indicate that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and wild progenitor or ancient landraces. Feral ramie has greater genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization are different from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches which are substantially different from the niche of the wild progenitor, and three environmental variables were associated with habitat-specific adaptation in feral ramie. Our findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.

2.
Plant Divers ; 46(1): 78-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343592

RESUMO

Endangered species generally have small populations with low genetic diversity and a high genetic load. Thuja sutchuenensis is an endangered conifer endemic to southwestern China. It was once considered extinct in the wild, but in 1999 was rediscovered. However, little is known about its genetic load. We collected 67 individuals from five wild, isolated T. sutchuenensis populations, and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T. sutchuenensis to delineate the conservation units of T. sutchuenensis, based on whole transcriptome sequencing data, as well as target capture sequencing data. We found that populations of T. sutchuenensis could be divided into three groups. These groups had low levels genetic diversity and were moderately genetically differentiated. Our findings also indicate that T. sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum. Among Thuja species, T. sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection. However, distribution of fitness effects analysis indicated a high extinction risk for T. sutchuenensis. Multiple lines of evidence identified three management units for T. sutchuenensis. Although T. sutchuenensis possesses a low genetic load, low genetic diversity, suboptimal fitness, and anthropogenic pressures all present an extinction risk for this rare conifer. This might also hold true for many endangered plant species in the mountains all over the world.

3.
BMC Plant Biol ; 23(1): 645, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097946

RESUMO

BACKGROUND: The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS: Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS: Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.


Assuntos
Caprifoliaceae , Genomas de Plastídeos , Humanos , Adulto , Filogenia , Caprifoliaceae/genética , Genomas de Plastídeos/genética , Fenótipo , DNA Ribossômico
4.
BMC Plant Biol ; 23(1): 423, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37700228

RESUMO

BACKGROUND: Anthropogenic activities are causing unprecedented loss of genetic diversity in many species. However, the effects on genetic diversity from large-scale grafting onto wild plants of crop species are largely undetermined. Iron walnut (Juglans sigillata Dode) is a deciduous nut tree crop endemic to southwestern China with a long history of cultivation. Due to the rapid expansion of the walnut industry, many natural populations are now being replaced by cultivars grafted onto wild rootstocks. However, little is known about the potential genetic consequences of such action on natural populations. RESULTS: We sampled the scion and the rootstock from each of 149 grafted individuals within nine wild populations of J. sigillata from Yunnan Province which is the center of walnut diversity and cultivation in China, and examined their genetic diversity and population structure using 31 microsatellite loci. Scions had lower genetic diversity than rootstocks, and this pattern was repeated in seven of the nine examined populations. Among those seven populations, AMOVA and clustering analyses showed a clear genetic separation between all rootstocks and all scions. However, the two remaining populations, both from northern Yunnan, showed genetic similarity between scions and rootstocks, possibly indicating that wild populations here are derived from feralized local cultivars. Moreover, our data indicated probable crop-to-wild gene flow between scions and rootstocks, across all populations. CONCLUSIONS: Our results indicate that large-scale grafting has been causing genetic diversity erosion and genetic structure breakdown in the wild material of J. sigillata within Yunnan. To mitigate these effects, we caution against the overuse of grafting in wild populations of iron walnut and other crop species and recommend the preservation of natural genotypes through in situ  and ex situ conservation.


Assuntos
Juglans , Juglans/genética , Nozes , China , Análise por Conglomerados , Ferro
5.
Trends Ecol Evol ; 38(3): 289-300, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456382

RESUMO

Long-distance dispersal (LDD) beyond the range of a species is an important driver of ecological and evolutionary patterns, but insufficient attention has been given to postdispersal establishment. In this review, we summarize current knowledge of the post-LDD establishment phase in plant colonization, identify six key determinants of establishment success, develop a general quantitative framework for post-LDD establishment, and address the major challenges and opportunities in future research. These include improving detection and understanding of LDD using novel approaches, investigating mechanisms determining post-LDD establishment success using mechanistic modeling and inference, and comparison of establishment between past and present. By addressing current knowledge gaps, we aim to further our understanding of how LDD affects plant distributions, and the long-term consequences of LDD events.


Assuntos
Modelos Biológicos , Dispersão Vegetal , Plantas , Evolução Biológica
6.
Ann Bot ; 130(5): 687-701, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36087101

RESUMO

BACKGROUND AND AIMS: Rhododendron is a species-rich and taxonomically challenging genus due to recent adaptive radiation and frequent hybridization. A well-resolved phylogenetic tree would help to understand the diverse history of Rhododendron in the Himalaya-Hengduan Mountains where the genus is most diverse. METHODS: We reconstructed the phylogeny based on plastid genomes with broad taxon sampling, covering 161 species representing all eight subgenera and all 12 sections, including ~45 % of the Rhododendron species native to the Himalaya-Hengduan Mountains. We compared this phylogeny with nuclear phylogenies to elucidate reticulate evolutionary events and clarify relationships at all levels within the genus. We also estimated the timing and diversification history of Rhododendron, especially the two species-rich subgenera Rhododendron and Hymenanthes that comprise >90 % of Rhododendron species in the Himalaya-Hengduan Mountains. KEY RESULTS: The full plastid dataset produced a well-resolved and supported phylogeny of Rhododendron. We identified 13 clades that were almost always monophyletic across all published phylogenies. The conflicts between nuclear and plastid phylogenies suggested strongly that reticulation events may have occurred in the deep lineage history of the genus. Within Rhododendron, subgenus Therorhodion diverged first at 56 Mya, then a burst of diversification occurred from 23.8 to 17.6 Mya, generating ten lineages among the component 12 clades of core Rhododendron. Diversification in subgenus Rhododendron accelerated c. 16.6 Mya and then became fairly continuous. Conversely, Hymenanthes diversification was slow at first, then accelerated very rapidly around 5 Mya. In the Himalaya-Hengduan Mountains, subgenus Rhododendron contained one major clade adapted to high altitudes and another to low altitudes, whereas most clades in Hymenanthes contained both low- and high-altitude species, indicating greater ecological plasticity during its diversification. CONCLUSIONS: The 13 clades proposed here may help to identify specific ancient hybridization events. This study will help to establish a stable and reliable taxonomic framework for Rhododendron, and provides insight into what drove its diversification and ecological adaption. Denser sampling of taxa, examining both organelle and nuclear genomes, is needed to better understand the divergence and diversification history of Rhododendron.


Assuntos
Genomas de Plastídeos , Filogenia , Rhododendron , Genomas de Plastídeos/genética , Rhododendron/classificação , Rhododendron/genética
8.
Mol Phylogenet Evol ; 175: 107555, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724818

RESUMO

Climate change and geological events have long been known to shape biodiversity, implying that these can likewise be viewed from a biological perspective. To study whether plants can shed light on this, and how they responded to climate change there, we examined Oreocnide, a genus widely distributed in SE Asia. Based on broad geographic sampling with genomic data, we employed an integrative approach of phylogenomics, molecular dating, historical biogeography, and ecological analyses. We found that Oreocnide originated in mainland East Asia and began to diversify ∼6.06 Ma, probably in response to a distinct geographic and climatic transition in East Asia at around that time, implying that the last important geological change in mainland SE Asia might be 1 Ma older than previously suggested. Around six immigration events to the islands of Malesia followed, indicating that immigration from the mainland could be an underestimated factor in the assembly of biotic communities in the region. Two detected increases of diversification rate occurred 3.13 and 1.19 Ma, which strongly implicated climatic rather than geological changes as likely drivers of diversification, with candidates being the Pliocene intensification of the East Asian monsoons, and Pleistocene climate and sea level fluctuations. Distribution modelling indicated that Pleistocene sea level and climate fluctuations were inferred to enable inter-island dispersal followed by allopatric separation, underpinning radiation in the genus. Overall, our study, based on multiple lines of evidence, linked plant diversification to the most recent climatic and geological events in SE Asia. We highlight the importance of immigration in the assembly and diversification of the SE Asian flora, and underscore the utility of plant clades, as independent lines of evidence, for reconstructing recent climatic and geological events in the SE Asian region.


Assuntos
Urticaceae , Ásia , Biodiversidade , Evolução Biológica , Filogenia , Filogeografia , Plantas
9.
Front Plant Sci ; 13: 870949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668809

RESUMO

Urticeae s.l., a tribe of Urticaceae well-known for their stinging trichomes, consists of more than 10 genera and approximately 220 species. Relationships within this tribe remain poorly known due to the limited molecular and taxonomic sampling in previous studies, and chloroplast genome (CP genome/plastome) evolution is still largely unaddressed. To address these concerns, we used genome skimming data-CP genome and nuclear ribosomal DNA (18S-ITS1-5.8S-ITS2-26S); 106 accessions-for the very first time to attempt resolving the recalcitrant relationships and to explore chloroplast structural evolution across the group. Furthermore, we assembled a taxon rich two-locus dataset of trnL-F spacer and ITS sequences across 291 accessions to complement our genome skimming dataset. We found that Urticeae plastomes exhibit the tetrad structure typical of angiosperms, with sizes ranging from 145 to 161 kb and encoding a set of 110-112 unique genes. The studied plastomes have also undergone several structural variations, including inverted repeat (IR) expansions and contractions, inversion of the trnN-GUU gene, losses of the rps19 gene, and the rpl2 intron, and the proliferation of multiple repeat types; 11 hypervariable regions were also identified. Our phylogenomic analyses largely resolved major relationships across tribe Urticeae, supporting the monophyly of the tribe and most of its genera except for Laportea, Urera, and Urtica, which were recovered as polyphyletic with strong support. Our analyses also resolved with strong support several previously contentious branches: (1) Girardinia as a sister to the Dendrocnide-Discocnide-Laportea-Nanocnide-Zhengyia-Urtica-Hesperocnide clade and (2) Poikilospermum as sister to the recently transcribed Urera sensu stricto. Analyses of the taxon-rich, two-locus dataset showed lower support but was largely congruent with results from the CP genome and nuclear ribosomal DNA dataset. Collectively, our study highlights the power of genome skimming data to ameliorate phylogenetic resolution and provides new insights into phylogenetic relationships and chloroplast structural evolution in Urticeae.

10.
Ann Bot ; 129(4): 429-441, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35018412

RESUMO

BACKGROUND AND AIMS: Many angiosperms can secrete both floral (FN) and extrafloral (EFN) nectar. However, much remains unclear about how EFN and FN differ in secretion, composition and ecological function, especially when both FN and EFN are secreted on flowers of the same species. METHODS: Hemerocallis citrina flowers secrete both FN and EFN. The FN and EFN traits including volume, presentation pattern and temporal rhythms of secretion were compared by field observation. Sugar and amino acid contents were analysed using regular biochemical methods, whereas the proteome was investigated by combined gel-based and gel-free approaches. Animal feeders on FN and EFN were investigated by field observation. Hemerocallis citrina plants were exposed by soil drenching to two systemic insecticides, acetamiprid and imidacloprid, and the concentration of these in FN and EFN was measured by ultra-high performance liquid chromatography coupled with mass spectrometry. KEY RESULTS: Hemerocallis citrina FN was concentrated and sucrose dominant, secreted in the mature flower tube and served as a reward for pollinators. Conversely, EFN was hexose rich, more dilute and less rich in sugar and amino acids. EFN was secreted on the outside of developing floral buds, and was likely to attract predatory animals for defence. EFN had fewer phenolics, but more pathogenesis-related components, such as chitinase and glucanase. A significantly different proteomic profile and enzymatic activities between FN and EFN suggest that they had different biosynthesis mechanisms. Both neonicotinoid insecticides examined became present in both nectar types soon after application, but in greater concentration within EFN; EFN also attracted a wider range of insect species than FN. CONCLUSIONS: Hemerocallis citrina FN and EFN differed in production, composition and ecological function. The EFN pathway could be a significant way for neonicotinoids to enter the wild food chain, and must be considered when evaluating the risks to the environment of other systemic insecticides.


Assuntos
Formigas , Hemerocallis , Inseticidas , Animais , Carboidratos , Flores/metabolismo , Hemerocallis/metabolismo , Neonicotinoides , Néctar de Plantas/metabolismo , Proteômica , Açúcares
11.
Mol Ecol ; 31(3): 767-779, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34826164

RESUMO

Recent advancements in whole genome sequencing techniques capable of covering nearly all the nucleotide variations of a genome would make it possible to set up a conservation framework for threatened plants at the genomic level. Here we applied a whole genome resequencing approach to obtain genome-wide data from 105 individuals sampled from the 10 currently known extant populations of Acer yangbiense, an endangered species with fragmented habitats and restricted distribution in Yunnan, China. To inform meaningful conservation action, we investigated what factors might have contributed to the formation of its extremely small population sizes and what threats it currently suffers at a genomic level. Our results revealed that A. yangbiense has low genetic diversity and comprises different numbers of genetic groups based on neutral (seven) and selected loci (13), with frequent gene flow between populations. Repeated bottleneck events, particularly the most recent one occurring within ~10,000 years before present, which decreased its effective population size (Ne ) < 200, and severe habitat fragmentation resulting from anthropogenic activities as well as a biased gender ratio of mature individuals in its natural habitat, might have together contributed to the currently fragmented and endangered status of A. yangbiense. The species has suffered from inbreeding and deleterious mutation load, both of which varied among populations but had similar patterns; that is, populations with higher FROH (frequency of runs of homozygosity) always carried a larger number of deleterious mutations in the homozygous state than in populations with lower FROH. In addition, based on our genetic differentiation results, and the distribution patterns of homozygous deleterious mutations in individuals, we recommend certain conservation actions regarding the genetic rescue of A. yangbiense. Overall, our study provides meaningful insights into the conservation genetics and a framework for the further conservation for the endangered A. yangbiense.


Assuntos
Acer , Acer/genética , Animais , Efeitos Antropogênicos , China , Espécies em Perigo de Extinção , Variação Genética , Genômica , Humanos , Metagenômica , Densidade Demográfica
12.
Natl Sci Rev ; 9(12): nwac276, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36687562

RESUMO

Radiations are especially important for generating species biodiversity in mountainous ecosystems. The contribution of hybridization to such radiations has rarely been examined. Here, we use extensive genomic data to test whether hybridization was involved in evolutionary radiation within Rhododendron subgenus Hymenanthes, whose members show strong geographic isolation in the mountains of southwest China. We sequenced genomes for 143 species of this subgenus and 93 species of four other subgenera, and found that Hymenanthes was monophyletic and radiated during the late Oligocene to middle Miocene. Widespread hybridization events were inferred within and between the identified clades and subclades. This suggests that hybridization occurred both early and late during diversification of subgenus Hymenanthes, although the extent to which hybridization, speciation through mixing-isolation-mixing or hybrid speciation, accelerated the diversification needs further exploration. Cycles of isolation and contact in such and other montane ecosystems may have together promoted species radiation through hybridization between diverging populations and species. Similar radiation processes may apply to other montane floras in this region and elsewhere.

13.
New Phytol ; 232(3): 1463-1476, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34292587

RESUMO

Understanding processes that generate and maintain large disjunctions within plant species can provide valuable insights into plant diversity and speciation. The butterfly bush Buddleja alternifolia has an unusual disjunct distribution, occurring in the Himalaya, Hengduan Mountains (HDM) and the Loess Plateau (LP) in China. We generated a high-quality, chromosome-level genome assembly of B. alternifolia, the first within the family Scrophulariaceae. Whole-genome re-sequencing data from 48 populations plus morphological and petal colour reflectance data covering its full distribution range were collected. Three distinct genetic lineages of B. alternifolia were uncovered, corresponding to Himalayan, HDM and LP populations, with the last also differentiated morphologically and phenologically, indicating occurrence of allopatric speciation likely to be facilitated by geographic isolation and divergent adaptation to distinct ecological niches. Moreover, speciation with gene flow between populations from either side of a mountain barrier could be under way within LP. The current disjunctions within B. alternifolia might result from vicariance of a once widespread distribution, followed by several past contraction and expansion events, possibly linked to climate fluctuations promoted by the Kunlun-Yellow river tectonic movement. Several adaptive genes are likely to be either uniformly or diversely selected among regions, providing a footprint of local adaptations. These findings provide new insights into plant biogeography, adaptation and different processes of allopatric speciation.


Assuntos
Buddleja , Demografia , Ecossistema , Fluxo Gênico , Especiação Genética , Filogenia
14.
Evol Appl ; 13(10): 2646-2662, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294014

RESUMO

Many natural systems are subject to profound and persistent anthropogenic influence. Human-induced gene movement through afforestation and the selective transportation of genotypes might enhance the potential for intraspecific hybridization, which could lead to outbreeding depression. However, the evolutionary legacy of afforestation on the spatial genetic structure of forest tree species has barely been investigated. To do this properly, the effects of anthropogenic and natural processes must be examined simultaneously. A multidisciplinary approach, integrating phylogeography, population genetics, species distribution modeling, and niche divergence would permit evaluation of potential anthropogenic impacts, such as mass planting near-native material. Here, these approaches were applied to Pinus armandii, a Chinese endemic coniferous tree species, that has been mass planted across its native range. Population genetic analyses showed that natural populations of P. armandii comprised three lineages that diverged around the late Miocene, during a period of massive uplifts of the Hengduan Mountains, and intensification of Asian Summer Monsoon. Only limited gene flow was detected between lineages, indicating that each largely maintained is genetic integrity. Moreover, most or all planted populations were found to have been sourced within the same region, minimizing disruption of large-scale spatial genetic structure within P. armandii. This might be because each of the three lineages had a distinct climatic niche, according to ecological niche modeling and niche divergence tests. The current study provides empirical genetic and ecological evidence for the site-species matching principle in forestry and will be useful to manage restoration efforts by identifying suitable areas and climates for introducing and planting new forests. Our results also highlight the urgent need to evaluate the genetic impacts of large-scale afforestation in other native tree species.

15.
Front Genet ; 11: 729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733543

RESUMO

Debregeasia is an economically important genus of the nettle family (Urticaceae). Previous systematic studies based on morphology, or using up to four plastome regions, have not satisfactorily resolved relationships within the genus. Here, we report 25 new plastomes for Urticaceae, including 12 plastomes from five Debregeasia species and 13 plastomes from other genera. Together with the one published plastome for Debregeasia, we analyzed plastome structure and character, identified mutation hotspots and loci under selection, and constructed phylogenies. The plastomes of Debregeasia were found to be very conservative, with a size from 155,743 bp to 156,065 bp, and no structural variation. Eleven mutation hotspots were identified, including three (rpoB-trnC-GCA, trnT-GGU-psbD and ycf1) that are highly variable both within Debregeasia and among genera; these show high potential value for future DNA barcoding, population genetics and phylogenetic reconstruction. Selection pressure analysis revealed nine genes (clpP, ndhF, petB, psbA, psbK, rbcL, rpl23, ycf2, and ycf1) that may experience positive selection. Phylogenomic analyses results suggest that Debregeasia was monophyletic, and closest to Boehmeria among genera examined. Within Debregeasia, D. longifolia was sister to D. saeneb, whereas D. elliptica, D. orientalis with D. squamata formed the other subclade. This study enriches organelle genome resources for Urticaceae, and highlights the utility of plastome data for detecting mutation hotspots for evolutionary and systematic analysis.

16.
Mol Ecol ; 29(7): 1250-1266, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32150782

RESUMO

Having a comprehensive understanding of population structure, genetic differentiation and demographic history is important for the conservation and management of threatened species. High-throughput sequencing (HTS) provides exciting opportunities to address a wide range of factors for conservation genetics. Here, we generated HTS data and identified 266,884 high-quality single nucleotide polymorphisms from 82 individuals of Cupressus chengiana, to assess population genomics across the species' full range, comprising the Daduhe River (DDH), Minjiang River (MJR) and Bailongjiang River (BLJ) catchments in western China. admixture, principal components analysis and phylogenetic analyses indicated that each region contains a distinct lineage, with high levels of differentiation between them (DDH, MJR and BLJ lineages). MJR was newly distinguished compared to previous surveys, and evidence including coalescent simulations supported a hybrid origin of MJR during the Quaternary. Each of these three lineages should be recognized as an evolutionarily significant unit (ESU), due to isolation, differing genetic adaptations and different demographic history. Currently, each ESU faces distinct threats, and will require different conservation strategies. Our work shows that population genomic approaches using HTS can reconstruct the complex evolutionary history of threatened species in mountainous regions, and hence inform conservation efforts, and contribute to the understanding of high biodiversity in mountains.


Assuntos
Cupressus/genética , Genética Populacional , Hibridização Genética , Núcleo Celular/genética , China , Conservação dos Recursos Naturais , DNA de Cloroplastos/genética , Ecossistema , Espécies em Perigo de Extinção , Evolução Molecular , Fluxo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Polimorfismo de Nucleotídeo Único , RNA-Seq , Transcriptoma
17.
Appl Plant Sci ; 8(3): e11328, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32185119

RESUMO

PREMISE: A novel set of microsatellite markers was developed for Juglans sigillata (Juglandaceae), an endemic walnut species in southwestern China, to facilitate cultivar identification and future investigations into the genetic structure and domestication history of this species and its close relatives. METHODS AND RESULTS: We developed 32 microsatellite loci for J. sigillata using genomic data and used them to examine 60 individuals from three natural populations. A high level of polymorphism was detected by these primers, with up to eight alleles observed per locus, and an average of four alleles across populations. The levels of observed and expected heterozygosity ranged from 0.000-1.000 and 0.000-0.785, respectively. All but two of the loci were also successfully amplified in three closely related Eurasian Juglans species (J. regia, J. cathayensis, and J. mandshurica). CONCLUSIONS: The microsatellite loci identified here provide a powerful resource for examining the genetic structure and domestication history of Juglans, as well as identification of its cultivars.

18.
Planta ; 250(5): 1703-1715, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414205

RESUMO

MAIN CONCLUSION: The tobacco nectar proteome mainly consists of pathogenesis-related proteins with two glycoproteins. Expression of nectarins was non-synchronous, and not nectary specific. After secretion, tobacco nectar changed from sucrose rich to hexose rich. Floral nectar proteins (nectarins) play important roles in inhibiting microbial growth in nectar, and probably also tailoring nectar chemistry before or after secretion; however, very few plant species have had their nectar proteomes thoroughly investigated. Nectarins from Nicotiana tabacum (NT) were separated using two-dimensional gel electrophoresis and then analysed using mass spectrometry. Seven nectarins were identified: acidic endochitinase, ß-xylosidase, α-galactosidase, α-amylase, G-type lectin S-receptor-like serine/threonine-protein kinase, pathogenesis-related protein 5, and early nodulin-like protein 2. An eighth nectarin, a glycoprotein with unknown function, was identified following isolation from NT nectar using a Qproteome total glycoprotein kit, separation by SDS-PAGE, and identification by mass spectrometry. Expression of all identified nectarins, plus four invertase genes, was analysed by qRT PCR; none of these genes had nectary-specific expression, and none had synchronous expression. The total content of sucrose, hexoses, proteins, phenolics, and hydrogen peroxide were determined at different time intervals in secreted nectar, both within the nectar tube (in vivo) and following extraction from it during incubation at 30 °C for up to 40 h in plastic tubes (in vitro). After secretion, the ratio of hexose to sucrose substantially increased for in vivo nectar, but no sugar composition changes were detected in vitro. This implies that sucrose hydrolysis in vivo might be done by fixed apoplastic invertase. Both protein and hydrogen peroxide levels declined in vitro but not in vivo, implying that some factors other than nectarins act to maintain their levels in the flower, after secretion.


Assuntos
Nicotiana/enzimologia , Néctar de Plantas/metabolismo , Proteoma , Proteômica , Eletroforese em Gel Bidimensional , Flores/genética , Flores/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Néctar de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética
19.
Ann Bot ; 123(6): 1089-1098, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-30852591

RESUMO

BACKGROUND AND AIMS: Tertiary relict and Arctic/circumboreal distributions are two major patterns of Northern Hemisphere intercontinental disjunctions with very different histories. Each has been well researched, but members of one biome have generally not been incorporated in the biogeographical analyses of the other, and links or transitions between these two biomes have rarely been addressed. METHODS: Phylogenies of Chimaphila were generated based on cpDNA and nuclear ITS, using Bayesian and maximum likelihood methods. A time-calibrated phylogeny was generated using BEAST. Ancestral area reconstruction was inferred using both statistical dispersal-vicariance analysis and a dispersal-extinction-cladogenesis model. KEY RESULTS: The Chimaphila crown group was estimated to have originated in the early Miocene. The lineages of C. umbellata diverged early, but its present circumboreal distribution was not achieved until around the middle Pliocene or later. Sister to this is a clade of four species with Tertiary relict distribution. Among these, two expansions occurred from North America to Asia, probably via the Bering Land Bridge, generating its current disjunctions. CONCLUSIONS: Our data concur with a few other studies, indicating that the circumboreal woodland biome has an older origin than most true Arctic-alpine taxa, having gradually recruited taxa since the early Oligocene. For the origin of Asia-North America disjunctions in Chimaphila, an 'out-of-America' migration was supported. It is not clear in which direction Pyroloideae lineages moved between Tertiary relict disjunctions and Arctic/circumboreal distributions; each biome might have recruited species from the other.


Assuntos
Ericaceae , Ásia , Teorema de Bayes , Florestas , América do Norte , Filogenia , Filogeografia
20.
Food Chem ; 282: 76-83, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711108

RESUMO

Honey, as a commercial product, is a target of adulteration through inappropriate production practices and deliberate mislabelling of botanical origin. Floral nectar protein could be a good marker for determining the source flowers of honey, especially monofloral honeys. Here, nectar and monofloral honey from Eriobotrya japonica Lindl. (loquat) were systematically compared, especially regarding proteomic and enzymatic activity. Using two-dimensional electrophoresis and mass spectrometry, only bee-originated proteins were detected in loquat honey. Xylosidase, thaumatin, and two kinds of chitinases were detected in loquat floral nectar, and their activity in loquat nectar and honey were quantified. Following gel electrophoresis, loquat honey had similar chitinase activity profiles to loquat nectar, but both were clearly distinguishable from Camellia sinensis nectar and Brassica napus honey. To our knowledge, this is the first examination of nectar-origin enzyme activity in honey. Zymography of chitinases is a potential marker for determining or authenticating the botanical origin of honeys.


Assuntos
Biomarcadores/análise , Quitinases/análise , Eriobotrya/metabolismo , Mel/análise , Espectrometria de Massas , Animais , Abelhas , Eletroforese em Gel Bidimensional , Eriobotrya/química , Flores/enzimologia , Néctar de Plantas/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...