Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 126: 25-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232913

RESUMO

The inter-alpha-trypsin inhibitor (IαI) complex is composed of the bikunin core protein with a single chondroitin sulfate (CS) attached and one or two heavy chains (HCs) covalently linked to the CS chain. The HCs from IαI can be transferred to hyaluronan (HA) through a TNFα-stimulated gene-6 (TSG-6) dependent process to form an HC•HA matrix. Previous studies reported increased IαI, HA, and HC•HA complexes in mouse bronchoalveolar lavage fluid (BALF) post-influenza infection. However, the expression and incorporation of HCs into the HA matrix of the lungs during the clinical course of influenza A virus (IAV) infection and the biological significance of the HC•HA matrix are poorly understood. The present study aimed to better understand the composition of HC•HA matrices in mice infected with IAV and how these matrices regulate the host pulmonary immune response. In IAV infected mice bikunin, HC1-3, TSG-6, and HAS1-3 all show increased gene expression at various times during a 12-day clinical course. The increased accumulation of IαI and HA was confirmed in the lungs of infected mice using immunohistochemistry and quantitative digital pathology. Western blots confirmed increases in the IαI components in BALF and lung tissue at 6 days post-infection (dpi). Interestingly, HCs and bikunin recovered from BALF and plasma from mice 6 dpi with IAV, displayed differences in the HC composition by Western blot analysis and differences in bikunin's CS chain sulfation patterns by mass spectrometry analysis. This strongly suggests that the IαI components were synthesized in the lungs rather than translocated from the vascular compartment. HA was significantly increased in BALF at 6 dpi, and the HA recovered in BALF and lung tissues were modified with HCs indicating the presence of an HC•HA matrix. In vitro experiments using polyinosinic-polycytidylic acid (poly(I:C)) treated mouse lung fibroblasts (MLF) showed that modification of HA with HCs increased cell-associated HA, and that this increase was due to the retention of HA in the MLF glycocalyx. In vitro studies of leukocyte adhesion showed differential binding of lymphoid (Hut78), monocyte (U937), and neutrophil (dHL60) cell lines to HA and HC•HA matrices. Hut78 cells adhered to immobilized HA in a size and concentration-dependent manner. In contrast, the binding of dHL60 and U937 cells depended on generating a HC•HA matrix by MLF. Our in vivo findings, using multiple bronchoalveolar lavages, correlated with our in vitro findings in that lymphoid cells bound more tightly to the HA-glycocalyx in the lungs of influenza-infected mice than neutrophils and mononuclear phagocytes (MNPs). The neutrophils and MNPs were associated with a HC•HA matrix and were more readily lavaged from the lungs. In conclusion, this work shows increased IαI and HA accumulation and the formation of a HC•HA matrix in mouse lungs post-IAV infection. The formation of HA and HC•HA matrices could potentially create specific microenvironments in the lungs for immune cell recruitment and activation during IAV infection.


Assuntos
alfa-Globulinas , Influenza Humana , Orthomyxoviridae , Camundongos , Animais , Humanos , Ácido Hialurônico/metabolismo , Sulfatos de Condroitina/metabolismo , Pulmão/metabolismo , Orthomyxoviridae/metabolismo , Imunidade Inata , Progressão da Doença
2.
Osteoarthritis Cartilage ; 31(10): 1353-1364, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37257556

RESUMO

OBJECTIVE: To investigate the role of endogenous TSG-6 in human osteoarthritis (OA) and assess the disease-modifying potential of a TSG-6-based biological treatment in cell, explant and animal models of OA. DESIGN: Knee articular cartilages from OA patients were analyzed for TSG-6 protein and mRNA expression using immunohistochemistry and RNAscope, respectively. The inhibitory activities of TSG-6 and its isolated Link module (Link_TSG6) on cytokine-induced degradation of OA cartilage explants were compared. Human mesenchymal stem/stromal cell-derived chondrocyte pellet cultures were used to determine the effects of Link_TSG6 and full-length TSG-6 on IL-1α-, IL-1ß-, or TNF-stimulated ADAMTS4, ADAMTS5, and MMP13 mRNA expression. Link_TSG6 was administered i.a. to the rat ACLTpMMx model; cartilage damage and tactile allodynia were assessed. RESULTS: TSG-6 is predominantly associated with chondrocytes in regions of cartilage damage where high TSG-6 expression aligns with low MMP13, the major collagenase implicated in OA progression. Link_TSG6 is more potent than full-length TSG-6 at inhibiting cytokine-mediated matrix breakdown in human OA cartilage explants;>50% of donor cartilages, from 59 tested, were responsive to Link_TSG6 treatment. Link_TSG6 also displayed more potent effects in 3D pellet cultures, suppressing ADAMTS4, ADAMTS5, and MMP13 gene expression, which was consistent with reduced aggrecanase and collagenase activities in explant cultures. Link_TSG6 treatment reduced touch-evoked pain behavior and dose-dependently inhibited cartilage damage in a rodent model of surgically-induced OA. CONCLUSIONS: Link_TSG6 has enhanced chondroprotective activity compared to the full-length TSG-6 protein and shows potential as a disease modifying OA drug via its inhibition of aggrecanase and collagenase activity.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Ratos , Animais , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , RNA Mensageiro/metabolismo
3.
Ocul Surf ; 24: 40-50, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968766

RESUMO

PURPOSE: To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 (TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). METHODS: We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a mouse model of corneal epithelial debridement. RESULTS: Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions remained in ∼50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial debridement wounds. CONCLUSION: Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of inflammation.


Assuntos
Síndromes do Olho Seco , Animais , Moléculas de Adesão Celular , Ciclosporina , Modelos Animais de Doenças , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/patologia , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Lágrimas , Cicatrização
4.
J Biol Chem ; 295(16): 5278-5291, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32144206

RESUMO

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin ß-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor ß, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.


Assuntos
alfa-Globulinas/química , Matriz Extracelular/metabolismo , Imunidade Inata , Simulação de Dinâmica Molecular , Ovulação , Humanos , Cadeias beta de Integrinas/química , Domínios Proteicos , Fator de von Willebrand/química
5.
Matrix Biol ; 78-79: 60-83, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29362135

RESUMO

Tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) is an inflammation-associated secreted protein that has been implicated as having important and diverse tissue protective and anti-inflammatory properties, e.g. mediating many of the immunomodulatory and beneficial activities of mesenchymal stem/stromal cells. TSG-6 is constitutively expressed in some tissues, which are either highly metabolically active or subject to challenges from the environment, perhaps providing protection in these contexts. The diversity of its functions are dependent on the binding of TSG-6 to numerous ligands, including matrix molecules such as glycosaminoglycans, as well as immune regulators and growth factors that themselves interact with these linear polysaccharides. It is becoming apparent that TSG-6 can directly affect matrix structure and modulate the way extracellular signalling molecules interact with matrix. In this review, we focus mainly on the literature for TSG-6 over the last 10 years, summarizing its expression, structure, ligand-binding properties, biological functions and highlighting TSG-6's potential as a therapeutic for a broad range of disease indications.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Células-Tronco Mesenquimais/imunologia , Animais , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transdução de Sinais
6.
Reprod Fertil Dev ; 31(3): 529-537, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30373703

RESUMO

Cumulus-oocyte complex (COC) expansion is essential for ovulation and fertilisation and is linked to oocyte quality. Hyaluronan (HA), the major matrix constituent, is cross-linked via inter-α-inhibitor heavy chains (HCs), pentraxin 3 (PTX3) and tumour necrosis factor-stimulated gene 6 (TSG-6). All except HCs are secreted by cumulus cells in response to oocyte-secreted factors, which signal via SMAD pathways. The double mutant (DM) mouse generates oocytes lacking complex N- and O-glycans due to oocyte-specific deletion of core 1 ß1,3-galactosyltransferase (C1galt1) and N-acetylglucosaminyltransferase I (Mgat1) and has modified cumulus expansion. We compared COCs before expansion (48 h-post-pregnant mare serum gonadotrophin (PMSG)) and at late-stage expansion (9 h-post-human chorionic gonadotrophin (hCG); control n=3 mice, DM n=3 per group). Using histochemistry the levels of HA, HCs, PTX3, TSG-6 and phosphorylated-SMAD1/5/8 and -SMAD2 (12-25 COCs per group) were assessed. DM COCs did not differ from Controls in cumulus size or cell density at 9 h-post-hCG; however, HA and HC levels and phosphorylated-SMAD1/5/8 were reduced. Furthermore, no correlations were found between the levels of matrix molecules and cumulus area in DM or Control samples. These data suggest that HA and HCs can support cumulus expansion provided that they are present above minimum threshold levels. We propose that oocyte-specific ablation of C1galt1 and Mgat1 may affect bone morphogenetic protein 15 synthesis or bioactivity, thereby reducing SMAD1/5/8 phosphorylation and HA production.


Assuntos
Células do Cúmulo/metabolismo , Matriz Extracelular/metabolismo , Oócitos/metabolismo , Polissacarídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Feminino , Camundongos , Folículo Ovariano/metabolismo , Ovulação/metabolismo , Fosforilação , Polissacarídeos/genética
7.
J Biol Chem ; 291(24): 12627-12640, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27044744

RESUMO

TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1-85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo.


Assuntos
Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Glicosaminoglicanos/metabolismo , Animais , Sítios de Ligação , Adesão Celular , Moléculas de Adesão Celular/genética , Linhagem Celular , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Heparina/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Ressonância de Plasmônio de Superfície
8.
J Biol Chem ; 290(48): 28708-23, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26468290

RESUMO

The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix.


Assuntos
Moléculas de Adesão Celular , Células do Cúmulo/metabolismo , Matriz Extracelular , Ácido Hialurônico , Oócitos/metabolismo , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Camundongos
9.
Reproduction ; 149(5): 533-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25855670

RESUMO

During follicle development, oocytes secrete factors that influence the development of granulosa and cumulus cells (CCs). In response to oocyte and somatic cell signals, CCs produce extracellular matrix (ECM) molecules resulting in cumulus expansion, which is essential for ovulation, fertilisation, and is predictive of oocyte quality. The cumulus ECM is largely made up of hyaluronan (HA), TNF-stimulated gene-6 (TSG-6, also known as TNFAIP6), pentraxin-3 (PTX3), and the heavy chains (HCs) of serum-derived inter-α-inhibitor proteins. In contrast to other in vivo models where modified expansion impairs fertility, the cumulus mass of C1galt1 Mutants, which have oocyte-specific deletion of core 1-derived O-glycans, is modified without impairing fertility. In this report, we used C1galt1 Mutant (C1galt1(FF):ZP3Cre) and Control (C1galt1(FF)) mice to investigate how cumulus expansion is affected by oocyte-specific deletion of core 1-derived O-glycans without adversely affecting oocyte quality. Mutant cumulus-oocyte complexes (COCs) are smaller than Controls, with fewer CCs. Interestingly, the CCs in Mutant mice are functionally normal as each cell produced normal levels of the ECM molecules HA, TSG-6, and PTX3. However, HC levels were elevated in Mutant COCs. These data reveal that oocyte glycoproteins carrying core 1-derived O-glycans have a regulatory role in COC development. In addition, our study of Controls indicates that a functional COC can form provided all essential components are present above a minimum threshold level, and thus some variation in ECM composition does not adversely affect oocyte development, ovulation or fertilisation. These data have important implications for IVF and the use of cumulus expansion as a criterion for oocyte assessment.


Assuntos
Células do Cúmulo/metabolismo , Matriz Extracelular/metabolismo , Galactosiltransferases/fisiologia , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Polissacarídeos/deficiência , Animais , Células Cultivadas , Células do Cúmulo/citologia , Feminino , Fertilização , Técnicas Imunoenzimáticas , Camundongos , Camundongos Knockout , Oócitos/citologia , Folículo Ovariano/citologia , Ovulação/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
10.
J Biol Chem ; 289(44): 30481-30498, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25190808

RESUMO

Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking.


Assuntos
Proteína C-Reativa/química , Matriz Extracelular/fisiologia , Ácido Hialurônico/química , Componente Amiloide P Sérico/química , alfa-Globulinas/química , Animais , Moléculas de Adesão Celular/química , Linhagem Celular , Drosophila melanogaster , Matriz Extracelular/química , Feminino , Humanos , Folículo Ovariano/metabolismo , Ligação Proteica
11.
J Immunol ; 192(5): 2177-85, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501198

RESUMO

TNF-stimulated gene/protein-6 (TSG-6) is expressed by many different cell types in response to proinflammatory cytokines and plays an important role in the protection of tissues from the damaging consequences of acute inflammation. Recently, TSG-6 was identified as being largely responsible for the beneficial effects of multipotent mesenchymal stem cells, for example in the treatment of animal models of myocardial infarction and corneal injury/allogenic transplant. The protective effect of TSG-6 is due in part to its inhibition of neutrophil migration, but the mechanisms underlying this activity remain unknown. In this study, we have shown that TSG-6 inhibits chemokine-stimulated transendothelial migration of neutrophils via a direct interaction (KD, ∼ 25 nM) between TSG-6 and the glycosaminoglycan binding site of CXCL8, which antagonizes the association of CXCL8 with heparin. Furthermore, we found that TSG-6 impairs the binding of CXCL8 to cell surface glycosaminoglycans and the transport of CXCL8 across an endothelial cell monolayer. In vivo this could limit the formation of haptotactic gradients on endothelial heparan sulfate proteoglycans and, hence, integrin-mediated tight adhesion and migration. We further observed that TSG-6 suppresses CXCL8-mediated chemotaxis of neutrophils; this lower potency effect might be important at sites where there is high local expression of TSG-6. Thus, we have identified TSG-6 as a CXCL8-binding protein, making it, to our knowledge, the first soluble mammalian chemokine-binding protein to be described to date. We have also revealed a potential mechanism whereby TSG-6 mediates its anti-inflammatory and protective effects. This could inform the development of new treatments for inflammation in the context of disease or following transplantation.


Assuntos
Moléculas de Adesão Celular/imunologia , Movimento Celular/fisiologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Aloenxertos , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Adesão Celular/fisiologia , Células HL-60 , Heparina , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Neutrófilos/citologia , Transplante de Células-Tronco
12.
J Biol Chem ; 289(9): 5619-34, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24403066

RESUMO

Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.


Assuntos
Moléculas de Adesão Celular/química , Ácido Hialurônico/química , Modelos Moleculares , Oligossacarídeos/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/genética , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Ovulação/genética , Ovulação/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
13.
Arch Gynecol Obstet ; 289(4): 893-901, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24213015

RESUMO

INTRODUCTION: The human endometrium undergoes repetitive, cyclical changes under the influence of endocrine signals (estrogen and progesterone). In particular, the extensive tissue remodeling, angiogenesis and leukocyte infiltration that occur during decidualization of the endometrium give rise to an environment that is permissive to blastocyst attachment. However, it is now well established that crosstalk (via paracrine signals) between the trophoblast and the endometrium is also a key for successful implantation. Microarray studies have identified TSG-6 as a gene with elevated expression in endometrial stromal cells following the exposure to trophoblast and immune cell products. TSG-6 is an inflammation-associated protein which acts as a potent inhibitor of neutrophil extravasation and also plays important roles in matrix remodeling, e.g., by promoting hyaluronan (HA) cross-linking and down-regulating the protease network. Female TSG-6 (-/-) mice are infertile and this has been attributed to their inability to ovulate; however, the importance of TSG-6 in implantation has not been directly investigated. MATERIAL AND METHODS: Real-time PCR, as well as immunofluorescence staining was performed on endometrial biopsies of proliferative and secretory phase samples. In addition stromal cell cultures of human endometrium were used to assess the influence of different stimulating factors on the TSG-6 gene and protein expression via real-time PCR and ELISA. RESULTS: Herein demonstrate that TSG-6 mRNA is expressed by the endometrium during the proliferative and secretory phases of the menstrual cycle. We also show that conditioned media from placental tissues induce rapid upregulation of TSG-6 mRNA expression and sustained protein secretion, with evidence that TNF is an important factor in this effect. Furthermore, we demonstrate changes in protein expression in the mid-secretory phase in women affected by recurrent abortions. CONCLUSION: These data suggest that TSG-6 expression might be essential in endometrial matrix organization and feto-maternal communication during the implantation process.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endométrio/metabolismo , RNA Mensageiro/metabolismo , Células Estromais/metabolismo , Aborto Habitual/metabolismo , Biópsia , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Células Cultivadas , Endométrio/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Fase Folicular/metabolismo , Humanos , Fase Luteal/metabolismo , Placenta/metabolismo , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
14.
J Biol Chem ; 288(41): 29642-53, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24005673

RESUMO

Under inflammatory conditions and in the matrix of the cumulus-oocyte complex, the polysaccharide hyaluronan (HA) becomes decorated covalently with heavy chains (HCs) of the serum glycoprotein inter-α-inhibitor (IαI). This alters the functional properties of the HA as well as its structural role within extracellular matrices. The covalent transfer of HCs from IαI to HA is catalyzed by TSG-6 (tumor necrosis factor-stimulated gene-6), but TSG-6 is also known as a HA cross-linker that induces condensation of the HA matrix. Here, we investigate the interplay of these two distinct functions of TSG-6 by studying the ternary interactions of IαI and TSG-6 with well defined films of end-grafted HA chains. We demonstrate that TSG-6-mediated cross-linking of HA films is impaired in the presence of IαI and that this effect suppresses the TSG-6-mediated enhancement of HA binding to CD44-positive cells. Furthermore, we find that the interaction of TSG-6 and IαI in the presence of HA gives rise to two types of complexes that independently promote the covalent transfer of heavy chains to HA. One type of complex interacts very weakly with HA and is likely to correspond to the previously reported covalent HC·TSG-6 complexes. The other type of complex is novel and binds stably but noncovalently to HA. Prolonged incubation with TSG-6 and IαI leads to HA films that contain, in addition to covalently HA-bound HCs, several tightly but noncovalently bound molecular species. These findings have important implications for understanding how the biological activities of TSG-6 are regulated, such that the presence or absence of IαI will dictate its function.


Assuntos
alfa-Globulinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , alfa-Globulinas/química , Animais , Sítios de Ligação , Ligação Competitiva , Western Blotting , Moléculas de Adesão Celular/química , Linhagem Celular , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Humanos , Receptores de Hialuronatos/química , Ácido Hialurônico/química , Cinética , Microscopia de Interferência , Ligação Proteica , Ressonância de Plasmônio de Superfície
15.
Aesthet Surg J ; 31(1): 47-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21239672

RESUMO

BACKGROUND: The exact mechanism of capsular contracture (CC) is still unknown. The covalent modification of hyaluronan (HA) with the heavy chains (HC) of inter-α-inhibitor (IαI) has been identified as an important pathway in inflammation and tissue remodeling, where HC·HA formation is catalyzed by TSG-6 (the protein product of tumor necrosis factor stimulated gene-6). OBJECTIVE: The authors quantitatively assess the correlation between severity of CC (measured by Baker grade) and expression of HA, TSG-6, and IαI (ie, the polypeptides HC1, HC2, and bikunin) in periprosthetic breast capsules. METHODS: Immunofluorescent staining for HA, TSG-6, HC1, HC2, and bikunin was carried out on periprosthetic breast capsules (n = 7) of each Baker grade from four anatomical locations. Quantitative analysis was performed to identify differences in staining intensity. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to determine differences in TSG-6 gene expression levels. RESULTS: Severity of contracture was associated with reduced staining for both free HA (Pearson correlation coefficient, r = -0.645, P < .001) and TSG-6 (r = -0.642, P = .002). RT-qPCR showed a significant negative correlation between severity of contracture and TSG-6 gene expression levels (r = -0.750, P = .001). CONCLUSIONS: The negative correlation between TSG-6 expression levels and severity of CC suggests a possible protective role for TSG-6 in the context of CC formation, and this may have a clinically relevant role in prevention of breast CC.


Assuntos
Implantes de Mama/efeitos adversos , Moléculas de Adesão Celular/metabolismo , Contratura Capsular em Implantes/patologia , Adulto , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Moléculas de Adesão Celular/genética , Feminino , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Ácido Hialurônico/genética , Ácido Hialurônico/metabolismo , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Índice de Gravidade de Doença
16.
Arthritis Rheum ; 63(4): 1034-43, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21162099

RESUMO

OBJECTIVE: TSG-6 (the product of tumor necrosis factor [TNF]-stimulated gene 6) has a potent inhibitory effect on RANKL-mediated bone erosion. The aim of this study was to compare the activity of TSG-6 with that of osteoprotegerin (OPG) and to investigate its role as an autocrine modulator of cytokine-mediated osteoclast formation/activation. We also determined TSG-6 expression in inflammatory joint disease. METHODS: The effects of TSG-6, OPG, and the inflammation mediators TNFα, interleukin-1 (IL-1), and IL-6 on the formation of osteoclasts from peripheral blood mononuclear cells and synovial fluid (SF) macrophages were determined by tartrate-resistant acid phosphatase staining. Lacunar resorption and filamentous actin ring formation were measured as indicators of osteoclast activity. The amount of TSG-6 in culture media or SF was quantified by enzyme-linked immunosorbent assay, and expression of TSG-6 in synovial tissue was assessed by immunohistochemistry. RESULTS: TSG-6 acted in synergy with OPG to inhibit RANKL-mediated bone resorption and was produced by osteoclast precursors and mature osteoclasts in response to TNFα, IL-1, and IL-6. Expression of TSG-6 correlated with inhibition of lacunar resorption; this effect was ameliorated by an anti-TSG-6 antibody. The level of TSG-6 protein was determined in SF from patients with various arthritides; it was highest in patients with inflammatory conditions such as rheumatoid arthritis, in which it correlated with the amount of TSG-6 immunostaining in the synovium. TSG-6 inhibited the activation but not the formation of osteoclasts from SF macrophages. CONCLUSION: In the presence of inflammatory cytokines, osteoclasts produced TSG-6 at concentrations that are sufficient to inhibit lacunar resorption. This may represent an autocrine mechanism to limit the degree of bone erosion during joint inflammation.


Assuntos
Comunicação Autócrina/fisiologia , Reabsorção Óssea/fisiopatologia , Moléculas de Adesão Celular/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoprotegerina/farmacologia , Idoso , Artrite Psoriásica/patologia , Artrite Psoriásica/fisiopatologia , Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Interleucina-1/farmacologia , Interleucina-6/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/fisiopatologia , Osteoclastos/patologia , Fator de Necrose Tumoral alfa/farmacologia
17.
Exp Cell Res ; 316(15): 2465-76, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20403349

RESUMO

Migration Stimulating Factor (MSF) is a genetically truncated isoform of fibronectin (Fn). MSF is a potent stimulator of fibroblast migration, whereas full length Fn is devoid of motogenic activity. MSF and Fn contain four IGD motifs, located in the 3rd, 5th, 7th and 9th type I modules; these modules are referred to as (3)FnI, (5)FnI, (7)FnI and (9)FnI, respectively. We have previously reported that mutation of IGD motifs in modules (7)FnI and (9)FnI of MSF is sufficient to completely abolish the motogenic response of target adult skin fibroblasts. We now report that the IGD sequences in (3)FnI and (5)FnI are also capable of exhibiting motogenic activity when present within fragments of MSF. When present within (1-5)FnI, these sequences require the presence of serum or vitronectin for their motogenic activity to be manifest, whereas the IGD sequences in (7)FnI and (9)FnI are bioactive in the absence of serum factors. All MSF and IGD-containing peptides stimulated the phosphorylation of the integrin binding protein focal adhesion kinase (FAK) but did not necessarily affect migration. These results suggest that steric hindrance determines the motogenic activity of MSF and Fn, and that both molecules contain cryptic bioactive fragments.


Assuntos
Movimento Celular/fisiologia , Citocinas/química , Citocinas/fisiologia , Adulto , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibronectinas/química , Fibronectinas/fisiologia , Humanos , Masculino , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ratos , Homologia de Sequência de Aminoácidos
18.
J Leukoc Biol ; 86(1): 123-32, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19389798

RESUMO

The prototypic long PTX3 is a multifunctional protein involved in innate resistance to pathogens and in controlling inflammation. TSG-6 is a hyaluronan-binding protein that is involved in ECM remodeling and has anti-inflammatory and chondroprotective functions. PTX3 and TSG-6 are coregulated by growth differentiation factor-9 in granulosa cells, where they are produced during the periovulatory period and play essential roles in the incorporation of hyaluronan into the ECM during cumulus expansion. The present study was designed to assess whether PTX3 and TSG-6 are coregulated in leukocytes, in particular, in phagocytes and DC. Monocytes, macrophages, and myeloid DC were found to produce high levels of TSG-6 and PTX3 in response to proinflammatory mediators (LPS or cytokines). Unstimulated neutrophil polymorphonuclear granulocytes expressed high levels of TSG-6 mRNA, but not PTX3 transcript, and stored both proteins in granules. In contrast, endothelial cells expressed substantial amounts of PTX3 mRNA and low levels of TSG-6 transcript under the conditions tested. Anti-inflammatory cytokines, such as IL-4, dampened LPS-induced TSG-6 and PTX3 expression. Divergent effects were observed with IL-10, which synergizes with TLR-mediated PTX3 induction but inhibits LPS-induced TSG-6 transcription. Immunohistochemical analysis confirms the colocalization of the two proteins in inflammatory infiltrates and in endothelial cells of inflamed tissues. Thus, here we show that myelomonocytic cells and MoDC are a major source of TSG-6 and that PTX3 and TSG-6 are coregulated under most of the conditions tested. The coordinated expression of PTX3 and TSG-6 may play a role in ECM remodeling at sites of inflammation.


Assuntos
Proteína C-Reativa/genética , Moléculas de Adesão Celular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/imunologia , Leucócitos/metabolismo , Componente Amiloide P Sérico/genética , Proteína C-Reativa/análise , Moléculas de Adesão Celular/análise , Células Dendríticas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Fagócitos/metabolismo , RNA Mensageiro/análise , Componente Amiloide P Sérico/análise
19.
J Biol Chem ; 283(38): 25952-62, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18586671

RESUMO

TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6(-/-) mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6(-/-) mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts.


Assuntos
Remodelação Óssea/fisiologia , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/fisiologia , Osteoblastos/citologia , Osteoclastos/citologia , Ligante RANK/metabolismo , Animais , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Reabsorção Óssea , Humanos , Cinética , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Proteínas Recombinantes/química , Fator de Crescimento Transformador beta/metabolismo
20.
Am J Respir Cell Mol Biol ; 36(1): 20-31, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16873769

RESUMO

TSG-6 (the protein product of TNF-stimulated gene-6), an inflammation-associated protein, forms covalent complexes with heavy chains (HCs) from inter-alpha-inhibitor and pre-alpha-inhibitor and associates noncovalently with their common bikunin chain, potentiating the antiplasmin activity of this serine protease inhibitor. We show that TSG-6 and TSG-6.HC complexes are present in bronchoalveolar lavage fluid from patients with asthma and increase after allergen challenge. Immunodetection demonstrated elevated TSG-6 in the airway tissue and secretions of smokers. Experiments conducted in vitro with purified components revealed that bikunin.HC complexes (byproducts of TSG-6.HC formation) release bikunin. Immunoprecipitation revealed that bikunin accounts for a significant proportion of tissue kallikrein inhibition in bronchoalveolar lavage after allergen challenge but not in baseline conditions, confirming that bikunin in its free state, but not when associated with HCs, is a relevant protease inhibitor in airway secretions. In primary cultures of differentiated human airway epithelial and submucosal gland cells, TSG-6 is induced by TNF-alpha and IL-1beta, which suggests that these cells are responsible for TSG-6 release in vivo. Bikunin and HC3 (i.e., pre-alpha-inhibitor) were also induced by TNF-alpha in primary cultures. Our results suggest that TSG-6 may play an important protective role in bronchial epithelium by increasing the antiprotease screen on the airway lumen.


Assuntos
alfa-Globulinas/fisiologia , Asma/metabolismo , Moléculas de Adesão Celular/fisiologia , Glicoproteínas de Membrana/fisiologia , Subunidades Proteicas/metabolismo , Calicreínas Teciduais/fisiologia , Adolescente , Adulto , Lavagem Broncoalveolar , Células Cultivadas , Ativação Enzimática , Células Epiteliais/metabolismo , Glândulas Exócrinas/citologia , Feminino , Humanos , Interleucina-1beta/fisiologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Fumar/metabolismo , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...