Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 849915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372114

RESUMO

Many bacterial species, including several pathogens, can enter a so-called "viable but non-culturable" (VBNC) state when subjected to stress. Bacteria in the VBNC state are metabolically active but have lost their ability to grow on standard culture media, which compromises their detection by conventional techniques based on bacterial division. Under certain conditions, VBNC bacteria can regain their growth capacity and, for pathogens, their virulence potential, through a process called resuscitation. Here, we review the current state of knowledge of the VBNC state of Listeria monocytogenes (Lm), a Gram-positive pathogenic bacterium responsible for listeriosis, one of the most dangerous foodborne zoonosis. After a brief summary of characteristics of VBNC bacteria, we highlight work on VBNC Lm in the environment and in agricultural and food industry settings, with particular emphasis on the impact of antimicrobial treatments. We subsequently discuss recent data suggesting that Lm can enter the VBNC state in the host, raising the possibility that VBNC forms contribute to the asymptomatic carriage of this pathogen in wildlife, livestock and even humans. We also consider the resuscitation and virulence potential of VBNC Lm and the danger posed by these bacteria to at-risk individuals, particularly pregnant women. Overall, we put forth the hypothesis that VBNC forms contribute to adaptation, persistence, and transmission of Lm between different ecological niches in the One-Health continuum, and suggest that screening for healthy carriers, using alternative techniques to culture-based enrichment methods, should better prevent listeriosis risks.


Assuntos
Listeria monocytogenes , Listeriose , Saúde Única , Animais , Feminino , Humanos , Listeriose/microbiologia , Gravidez , Virulência , Zoonoses
2.
J Mol Microbiol Biotechnol ; 29(1-6): 10-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269503

RESUMO

BACKGROUND: Many bacteria transport cellobiose via a phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In Listeria monocytogenes, two pairs of soluble PTS components (EIIACel1/EIIBCel1 and EIIACel2/EIIBCel2) and the permease EIICCel1 were suggested to contribute to cellobiose uptake. Interestingly, utilization of several carbohydrates, including cellobiose, strongly represses virulence gene expression by inhibiting PrfA, the virulence gene activator. RESULTS: The LevR-like transcription regulator CelR activates expression of the cellobiose-induced PTS operons celB1-celC1-celA1, celB2-celA2, and the EIIC-encoding monocistronic celC2. Phosphorylation by P∼His-HPr at His550 activates CelR, whereas phosphorylation by P∼EIIBCel1 or P∼EIIBCel2 at His823 inhibits it. Replacement of His823 with Ala or deletion of both celA or celB genes caused constitutive CelR regulon expression. Mutants lacking EIICCel1, CelR or both EIIACel exhibitedslow cellobiose consumption. Deletion of celC1 or celR prevented virulence gene repression by the disaccharide, but not by glucose and fructose. Surprisingly, deletion of both celA genes caused virulence gene repression even during growth on non-repressing carbohydrates. No cellobiose-related phenotype was found for the celC2 mutant. CONCLUSION: The two EIIA/BCel pairs are similarly efficient as phosphoryl donors in EIICCel1-catalyzed cellobiose transport and CelR regulation. The permanent virulence gene repression in the celA double mutant further supports a role of PTSCel components in PrfA regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Celobiose/metabolismo , Listeria monocytogenes/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Virulência
3.
Artigo em Inglês | MEDLINE | ID: mdl-29868493

RESUMO

Intracellular bacterial pathogens are generally classified into two types: those that exploit host membrane trafficking to construct specific niches in vacuoles (i.e., "vacuolar pathogens"), and those that escape from vacuoles into the cytosol, where they proliferate and often spread to neighboring cells (i.e., "cytosolic pathogens"). However, the boundary between these distinct intracellular phenotypes is tenuous and may depend on the timing of infection and on the host cell type. Here, we discuss recent progress highlighting this phenotypic duality in Listeria monocytogenes, which has long been a model for cytosolic pathogens, but now emerges as a bacterium also capable of residing in vacuoles, in a slow/non-growing state. The ability of L. monocytogenes to enter a persistence stage in vacuoles might play a role during the asymptomatic incubation period of listeriosis and/or the carriage of this pathogen in asymptomatic hosts. Moreover, persistent vacuolar Listeria could be less susceptible to antibiotics and more difficult to detect by routine techniques of clinical biology. These hypotheses deserve to be explored in order to better manage the risks related to this food-borne pathogen.


Assuntos
Citosol/microbiologia , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Vacúolos/microbiologia , Animais , Portador Sadio/microbiologia , Modelos Animais de Doenças , Humanos , Camundongos SCID , Cultura Primária de Células
4.
PLoS Pathog ; 13(11): e1006734, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29190284

RESUMO

Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called "viable but non-culturable" state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy.


Assuntos
Células Epiteliais/metabolismo , Listeria monocytogenes , Listeriose/microbiologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Vacúolos
5.
J Mol Microbiol Biotechnol ; 26(6): 369-380, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27553222

RESUMO

Transposon insertion into Listeria monocytogenes lmo2665, which encodes an EIIC of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), was found to prevent D-arabitol utilization. We confirm this result with a deletion mutant and show that Lmo2665 is also required for D-xylitol utilization. We therefore called this protein EIICAxl. Both pentitols are probably catabolized via the pentose phosphate pathway (PPP) because lmo2665 belongs to an operon, which encodes the three PTSAxl components, two sugar-P dehydrogenases, and most PPP enzymes. The two dehydrogenases oxidize the pentitol-phosphates produced during PTS-catalyzed transport to the PPP intermediate xylulose-5-P. L. monocytogenes contains another PTS, which exhibits significant sequence identity to PTSAxl. Its genes are also part of an operon encoding PPP enzymes. Deletion of the EIIC-encoding gene (lmo0508) affected neither D-arabitol nor D-xylitol utilization, although D-arabitol induces the expression of this operon. Both operons are controlled by MtlR/LicR-type transcription activators (Lmo2668 and Lmo0501, respectively). Phosphorylation of Lmo0501 by the soluble PTSAxl components probably explains why D-arabitol also induces the second pentitol operon. Listerial virulence genes are submitted to strong repression by PTS sugars, such as glucose. However, D-arabitol inhibited virulence gene expression only at high concentrations, probably owing to its less efficient utilization compared to glucose.


Assuntos
Metabolismo dos Carboidratos , Listeria monocytogenes/metabolismo , Álcoois Açúcares/metabolismo , Xilitol/metabolismo , Transporte Biológico , Biotransformação , Deleção de Genes , Listeria monocytogenes/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética
6.
J Bacteriol ; 197(9): 1559-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691525

RESUMO

UNLABELLED: Listeriae take up glucose and mannose predominantly through a mannose class phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS(Man)), whose three components are encoded by the manLMN genes. The expression of these genes is controlled by ManR, a LevR-type transcription activator containing two PTS regulation domains (PRDs) and two PTS-like domains (enzyme IIA(Man) [EIIA(Man)]- and EIIB(Gat)-like). We demonstrate here that in Listeria monocytogenes, ManR is activated via the phosphorylation of His585 in the EIIA(Man)-like domain by the general PTS components enzyme I and HPr. We also show that ManR is regulated by the PTS(Mpo) and that EIIB(Mpo) plays a dual role in ManR regulation. First, yeast two-hybrid experiments revealed that unphosphorylated EIIB(Mpo) interacts with the two C-terminal domains of ManR (EIIB(Gat)-like and PRD2) and that this interaction is required for ManR activity. Second, in the absence of glucose/mannose, phosphorylated EIIB(Mpo) (P∼EIIB(Mpo)) inhibits ManR activity by phosphorylating His871 in PRD2. The presence of glucose/mannose causes the dephosphorylation of P∼EIIB(Mpo) and P∼PRD2 of ManR, which together lead to the induction of the manLMN operon. Complementation of a ΔmanR mutant with various manR alleles confirmed the antagonistic effects of PTS-catalyzed phosphorylation at the two different histidine residues of ManR. Deletion of manR prevented not only the expression of the manLMN operon but also glucose-mediated repression of virulence gene expression; however, repression by other carbohydrates was unaffected. Interestingly, the expression of manLMN in Listeria innocua was reported to require not only ManR but also the Crp-like transcription activator Lin0142. Unlike Lin0142, the L. monocytogenes homologue, Lmo0095, is not required for manLMN expression; its absence rather stimulates man expression. IMPORTANCE: Listeria monocytogenes is a human pathogen causing the foodborne disease listeriosis. The expression of most virulence genes is controlled by the transcription activator PrfA. Its activity is strongly repressed by carbohydrates, including glucose, which is transported into L. monocytogenes mainly via a mannose/glucose-specific phosphotransferase system (PTS(Man)). Expression of the man operon is regulated by the transcription activator ManR, the activity of which is controlled by a second, low-efficiency PTS of the mannose family, which functions as glucose sensor. Here we demonstrate that the EIIB(Mpo) component plays a dual role in ManR regulation: it inactivates ManR by phosphorylating its His871 residue and stimulates ManR by interacting with its two C-terminal domains.


Assuntos
Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transativadores/metabolismo , Fosforilação , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
7.
J Proteome Res ; 13(12): 6046-57, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25383790

RESUMO

Protein phosphorylation is a major mechanism of signal transduction in bacteria. Here, we analyzed the proteome and phosphoproteome of a wild-type strain of the food-borne pathogen Listeria monocytogenes that was grown in either chemically defined medium or rich medium containing glucose. We then compared these results with those obtained from an isogenic prfA* mutant that produced a constitutively active form of PrfA, the main transcriptional activator of virulence genes. In the prfA* mutant grown in rich medium, we identified 256 peptides that were phosphorylated on serine (S), threonine (T), or tyrosine (Y) residues, with a S/T/Y ratio of 155:75:12. Strikingly, we detected five novel phosphosites on the virulence protein ActA. This protein was known to be phosphorylated by a cellular kinase in the infected host, but phosphorylation by a listerial kinase had not previously been reported. Unexpectedly, SILAC experiments with the prfA* mutant grown in chemically defined medium revealed that, in addition to previously described PrfA-regulated proteins, several other proteins were significantly overproduced, among them were several proteins involved in purine biosynthesis. This work provides new information for our understanding of the correlation among protein phosphorylation, virulence mechanisms, and carbon metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Cromatografia Líquida , Meios de Cultura/química , Meios de Cultura/farmacologia , Glucose/farmacologia , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Mutação , Fatores de Terminação de Peptídeos/análise , Fatores de Terminação de Peptídeos/genética , Peptídeos/análise , Peptídeos/genética , Peptídeos/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteoma/análise , Proteoma/genética , Purinas/biossíntese , Serina/genética , Serina/metabolismo , Espectrometria de Massas em Tandem , Treonina/genética , Treonina/metabolismo , Tirosina/genética , Tirosina/metabolismo , Virulência/genética
8.
Microbiol Mol Biol Rev ; 78(2): 231-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24847021

RESUMO

The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.


Assuntos
Bactérias/metabolismo , Metabolismo dos Carboidratos , Fosfoenolpiruvato/metabolismo , Fosfotransferases/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Fosforilação , Ligação Proteica
9.
Biochim Biophys Acta ; 1834(7): 1415-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23318733

RESUMO

Numerous bacteria possess transcription activators and antiterminators composed of regulatory domains phosphorylated by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). These domains, called PTS regulation domains (PRDs), usually contain two conserved histidines as potential phosphorylation sites. While antiterminators possess two PRDs with four phosphorylation sites, transcription activators contain two PRDs plus two regulatory domains resembling PTS components (EIIA and EIIB). The activity of these transcription regulators is controlled by up to five phosphorylations catalyzed by PTS proteins. Phosphorylation by the general PTS components EI and HPr is usually essential for the activity of PRD-containing transcription regulators, whereas phosphorylation by the sugar-specific components EIIA or EIIB lowers their activity. For a specific regulator, for example the Bacillus subtilis mtl operon activator MtlR, the functional phosphorylation sites can be different in other bacteria and consequently the detailed mode of regulation varies. Some of these transcription regulators are also controlled by an interaction with a sugar-specific EIIB PTS component. The EIIBs are frequently fused to the membrane-spanning EIIC and EIIB-mediated membrane sequestration is sometimes crucial for the control of a transcription regulator. This is also true for the Escherichia coli repressor Mlc, which does not contain a PRD but nevertheless interacts with the EIIB domain of the glucose-specific PTS. In addition, some PRD-containing transcription activators interact with a distinct EIIB protein located in the cytoplasm. The phosphorylation state of the EIIB components, which changes in response to the presence or absence of the corresponding carbon source, affects their interaction with transcription regulators. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Genéticos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética
10.
J Bacteriol ; 194(18): 4972-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773791

RESUMO

Several bacteria use glycerol dehydrogenase to transform glycerol into dihydroxyacetone (Dha). Dha is subsequently converted into Dha phosphate (Dha-P) by an ATP- or phosphoenolpyruvate (PEP)-dependent Dha kinase. Listeria innocua possesses two potential PEP-dependent Dha kinases. One is encoded by 3 of the 11 genes forming the glycerol (gol) operon. This operon also contains golD (lin0362), which codes for a new type of Dha-forming NAD(+)-dependent glycerol dehydrogenase. The subsequent metabolism of Dha requires its phosphorylation via the PEP:sugar phosphotransferase system components enzyme I, HPr, and EIIA(Dha)-2 (Lin0369). P∼EIIA(Dha)-2 transfers its phosphoryl group to DhaL-2, which phosphorylates Dha bound to DhaK-2. The resulting Dha-P is probably metabolized mainly via the pentose phosphate pathway, because two genes of the gol operon encode proteins resembling transketolases and transaldolases. In addition, purified Lin0363 and Lin0364 exhibit ribose-5-P isomerase (RipB) and triosephosphate isomerase activities, respectively. The latter enzyme converts part of the Dha-P into glyceraldehyde-3-P, which, together with Dha-P, is metabolized via gluconeogenesis to form fructose-6-P. Together with another glyceraldehyde-3-P molecule, the transketolase transforms fructose-6-P into intermediates of the pentose phosphate pathway. The gol operon is preceded by golR, transcribed in the opposite orientation and encoding a DeoR-type repressor. Its inactivation causes the constitutive but glucose-repressible expression of the entire gol operon, including the last gene, encoding a pediocin immunity-like (PedB-like) protein. Its elevated level of synthesis in the golR mutant causes slightly increased immunity against pediocin PA-1 compared to the wild-type strain or a pedB-like deletion mutant.


Assuntos
Listeria/enzimologia , Listeria/metabolismo , Via de Pentose Fosfato , Fosfoenolpiruvato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria/genética , Óperon , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Desidrogenase do Álcool de Açúcar/genética
11.
Proteomics ; 11(21): 4155-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21956863

RESUMO

Phosphorylation is the most common and widely studied post-translational protein modification in bacteria. It plays an important role in all kinds of cellular processes and controls key regulatory mechanisms, including virulence in certain pathogens. To gain insight into the role of protein phosphorylation in the pathogen Listeria monocytogenes, the serine (Ser), threonine (Thr) and tyrosine (Tyr) phosphoproteome of this bacterium was determined. We used the "gel free" proteomic approach with high accuracy mass spectrometry after enrichment of phosphopeptides. A total of 143 sites of phosphorylation were clearly identified, on 155 unique peptides of 112 phosphoproteins. The Ser/Thr/Tyr phosphorylation site distribution was 93:43:7. All identified phosphopeptides are monophosphorylated, except one and many identified phosphoproteins are related to virulence, translation, phosphoenolpyruvate:sugar phosphotransferase system, glycolysis and stress response. A description of these phosphoproteins is provided together with a comparison of the phosphosites in the L. monocytogenes proteins and in their homologues of other bacteria for which the phosphoproteome has been determined. Compared with the previous studies, we noticed a more extended conservation of the phosphorylation sites in glycolytic enzymes as well as ribosomal proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria monocytogenes/patogenicidade , Fosfoproteínas/metabolismo , Proteômica/métodos , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Listeria monocytogenes/metabolismo , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Fosfoproteínas/análise , Fosforilação , Serina/análise , Treonina/análise , Tirosina/análise , Virulência
12.
Mol Microbiol ; 81(1): 274-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21564334

RESUMO

Listeria monocytogenes transports glucose/mannose via non-PTS permeases and phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS). Two mannose class PTS are encoded by the constitutively expressed mpoABCD and the inducible manLMN operons. The man operon encodes the main glucose transporter because manL or manM deletion significantly slows glucose utilization, whereas mpoA deletion has no effect. The PTS(Mpo) mainly functions as a constitutively synthesized glucose sensor controlling man operon expression by phosphorylating and interacting with ManR, a LevR-like transcription activator. EIIB(Mpo) plays a dual role in ManR regulation: P~EIIB(Mpo) prevailing in the absence of glucose phosphorylates and thereby inhibits ManR activity, whereas unphosphorylated EIIB(Mpo) prevailing during glucose uptake is needed to render ManR active. In contrast to mpoA, deletion of mpoB therefore strongly inhibits man operon expression and glucose consumption. A ΔptsI (EI) mutant consumes glucose at an even slower rate probably via GlcU-like non-PTS transporters. Interestingly, deletion of ptsI, manL, manM or mpoB causes elevated PrfA-mediated virulence gene expression. The PTS(Man) is the major player in glucose-mediated PrfA inhibition because the ΔmpoA mutant showed normal PrfA activity. The four mutants showing PrfA derepression contain no or only little unphosphorylated EIIAB(Man) (ManL), which probably plays a central role in glucose-mediated PrfA regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Listeria monocytogenes/crescimento & desenvolvimento , Manose/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Fatores de Terminação de Peptídeos/genética , Virulência , Fatores de Virulência/genética
13.
J Bacteriol ; 192(10): 2647-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348264

RESUMO

The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar.


Assuntos
Genoma Bacteriano/genética , Lacticaseibacillus casei/genética , Dados de Sequência Molecular
14.
Contrib Microbiol ; 16: 88-102, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19494580

RESUMO

Bacteria have developed several mechanisms which allow the preferred utilization of the most efficiently metabolizable carbohydrates when these organisms are exposed to a mixture of carbon sources. Interestingly, the same or similar mechanisms are used by some pathogens to control various steps of their infection process. The efficient metabolism of a carbon source might serve as signal for proper fitness. Alternatively, the presence of a specific carbon source might indicate to bacterial cells that they thrive in infection-related organs, tissues or cells and that specific virulence genes should be turned on or switched off. Frequently, virulence gene regulators are affected by changes in carbon source availability. For example, expression of the gene encoding the Streptococcus pyogenes virulence regulator Mga is controlled by the classical carbon catabolite repression (CCR) mechanism operative in Firmicutes. The activity of PrfA, the major virulence regulator in Listeria monocytogenes, seems to be controlled by the phosphorylation state of phosphotransferase system(PTS) components. In Vibrio cholerae synthesis of HapR, which regulates the expression of genes required for motility, is controlled via the Crp/cAMP CCR mechanism, whereas synthesis of Salmonella enterica HilE, which represses genes in a pathogenicity island, is regulated by the carbohydrate-responsive, PTS-controlled Mlc.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Carbono/metabolismo , Metabolismo dos Carboidratos , Enterobacteriaceae/metabolismo , Enterobacteriaceae/patogenicidade , Proteobactérias/metabolismo , Proteobactérias/patogenicidade , Virulência
15.
Mol Microbiol ; 57(5): 1367-80, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16102006

RESUMO

Signature-tagged mutagenesis (STM) was used to identify new genes involved in the virulence of the Gram-positive intracellular pathogen Listeria monocytogenes. One of the mutants isolated by this technique had the transposon inserted in virR, a gene encoding a putative response regulator of a two-component system. Deletion of virR severely decreased virulence in mice as well as invasion in cell-culture experiments. Using a transcriptomic approach, we identified 12 genes regulated by VirR, including the dlt-operon, previously reported to be important for L. monocytogenes virulence. However, a strain lacking dltA, was not as impaired in virulence as the DeltavirR strain, suggesting a role in virulence for other members of the vir regulon. Another VirR-regulated gene is homologous to mprF, which encodes a protein that modifies membrane phosphatidyl glycerol with l-lysine and that is involved in resistance to human defensins in Staphylococcus aureus. VirR thus appears to control virulence by a global regulation of surface components modifications. These modifications may affect interactions with host cells, including components of the innate immune system. Surprisingly, although controlling the same set of genes as VirR, the putative cognate histidine kinase of VirR, VirS, encoded by a gene located three genes downstream of virR, was shown not to be essential for virulence. By monitoring the activity of VirR with a GFP reporter construct, we showed that VirR can be activated independently of VirS, for example through a mechanism involving variations in the level of intracellular acetyl phosphate. In silico analysis of the VirR-regulated promoters revealed a VirR DNA-binding consensus site and specific interaction between purified VirR protein and this consensus sequence was demonstrated by gel mobility shift assays. This study identifies a second key virulence regulon in L. monocytogenes, after the prfA regulon.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Células CACO-2 , Sequência Consenso , Proteínas de Ligação a DNA/genética , Feminino , Genes Bacterianos , Histidina Quinase , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutação , Óperon/genética , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Virulência/genética
16.
Infect Immun ; 72(8): 4401-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15271896

RESUMO

Ami is an autolytic amidase from Listeria monocytogenes that is targeted to the bacterial surface via its C-terminal cell wall anchoring (CWA) domain. We recently showed that the CWA domain from Ami of L. monocytogenes EGD (serovar 1/2a) (Ami 1/2a) mediated bacterial binding to mammalian cells. Here we studied the sequence and binding properties of Ami from CHUT 82337 (serovar 4b) (Ami 4b). The Ami 4b polypeptide is predicted to be 770 amino acids long (compared with the 917 amino acids of Ami 1/2a from EGD). Ami 1/2a and Ami 4b are almost identical in the N-terminal enzymatic domain (approximately 98% amino acid identity), but the sequence is poorly conserved in the C-terminal CWA domain, with only approximately 54% amino acid identity and eight GW modules in Ami 1/2a compared with six GW modules in Ami 4b. The purified Ami 4b CWA domain efficiently bound serovar 4b bacterial cells and only poorly bound serovar 1/2a bacterial cells. The Ami 4b CWA domain was also significantly less able to bind Hep-G2 human hepatocytic cells than the Ami 1/2a CWA domain. We sequenced the ami regions encoding CWA domains of reference strains belonging to the 12 L. monocytogenes serovars. The phylogenic tree constructed from the sequences yielded a binary division into group I (serovars 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, and 7) and group II (serovars 4a, 4b, 4c, 4d, and 4e). This is the first direct evidence of divergence between serovars 1/2a and 4b in a gene involved in the adhesion of L. monocytogenes to mammalian cells, as well as the first demonstration of allelic polymorphism correlated with the somatic antigen in this species.


Assuntos
Adesinas Bacterianas , Amidoidrolases , Surtos de Doenças , Listeria monocytogenes/enzimologia , Listeriose/epidemiologia , N-Acetil-Muramil-L-Alanina Amidase , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeriose/microbiologia , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Análise de Sequência de DNA
17.
Mol Microbiol ; 47(6): 1613-25, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12622816

RESUMO

PrfA is the major regulator of Listeria virulence gene expression. This protein is a member of the Crp/Fnr family of transcription regulators. To gain a deeper understanding of the PrfA regulon, we constructed a whole-genome array based on the complete genome sequence of Listeria monocytogenes strain EGDe and evaluated the expression profiles of the wild-type EGDe and a prfA-deleted mutant (EGDe Delta prfA). Both strains were grown at 37 degrees C in brain-heart infusion broth (BHI) and BHI supplemented with either activated charcoal, a compound known to enhance virulence gene expression, or cellobiose, a sugar reported to downregulate virulence gene expression in spite of full expression of PrfA. We identified three groups of genes that are regulated differently. Group I comprises, in addition to the 10 already known genes, two new genes, lmo2219 and lmo0788, both positively regulated and preceded by a putative PrfA box. Group II comprises eight negatively regulated genes: lmo0278 is preceded by a putative PrfA box, and the remaining seven genes (lmo0178-lmo0184) are organized in an operon. Group III comprises 53 genes, of which only two (lmo0596 and lmo2067) are preceded by a putative PrfA box. Charcoal addition induced upregulation of group I genes but abolished regulation by PrfA of most group III genes. In the presence of cellobiose, all the group I genes were downregulated, whereas group III genes remained fully activated. Group II genes were repressed in all conditions tested. A comparison of the expression profiles between a second L. monocytogenes strain (P14), its spontaneous mutant expressing a constitutively active PrfA variant (P14prfA*) and its corresponding prfA-deleted mutant (P14 Delta prfA) and the EGDe strain revealed interesting strain-specific differences. Sequences strongly similar to a sigma B-dependent promoter were identified upstream of 22 group III genes. These results suggest that PrfA positively regulates a core set of 12 genes preceded by a PrfA box and probably expressed from a sigma A-dependent promoter. In contrast, a second set of PrfA-regulated genes lack a PrfA box and are expressed from a sigma B-dependent promoter. This study reveals that PrfA can act as an activator or a repressor and suggests that PrfA may directly or indirectly activate different sets of genes in association with different sigma factors.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Transativadores/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Celobiose/metabolismo , Carvão Vegetal , Meios de Cultura/química , Genes Bacterianos , Listeria monocytogenes/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Terminação de Peptídeos , Reação em Cadeia da Polimerase/métodos , Transativadores/metabolismo , Transcrição Gênica
18.
Mol Microbiol ; 43(1): 1-14, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11849532

RESUMO

The dlt operon of Gram-positive bacteria comprises four genes (dltA, dltB, dltC and dltD) that catalyse the incorporation of D-alanine residues into the cell wall-associated lipoteichoic acids (LTAs). In this work, we characterized the dlt operon of Listeria monocytogenes and constructed a D-Ala-deficient LTA mutant by inactivating the first gene (dltA) of this operon. The DltA- mutant did not show any morphological alterations and its growth rate was similar to that of the wild-type strain. However, it exhibited an increased susceptibility to the cationic peptides colistin, nisin and polymyxin B. The virulence of the DltA- mutant was severely impaired in a mouse infection model (4 log increase in the LD50) and, in vitro, the adherence of the mutant to various cell lines (murine bone marrow-derived macrophages and hepatocytes and a human epithelial cell line) was strongly restricted, although the amounts of surface proteins implicated in virulence (ActA, InlA and InlB) remains unaffected. We suggest that the decreased adherence of the DltA- mutant to non-phagocytic and phagocytic cells might be as a result of the increased electronegativity of its charge surface and/or the presence at the bacterial surface of adhesins possessing altered binding activities. These results show that the D-alanylation of the LTAs contributes to the virulence of the intracellular pathogen L. monocytogenes.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias , Listeria monocytogenes/fisiologia , Ácidos Teicoicos/metabolismo , Alanina/metabolismo , Sequência de Bases , Células CACO-2 , DNA Bacteriano , Teste de Complementação Genética , Humanos , Líquido Intracelular/microbiologia , Lipopolissacarídeos/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Dados de Sequência Molecular , Mutagênese , Óperon , Fenótipo , Análise de Sequência de DNA , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/fisiologia , Transcrição Gênica , Virulência
19.
Microbiology (Reading) ; 146 ( Pt 3): 731-739, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10746777

RESUMO

Insertional mutagenesis was performed with Tn1545 in the genetic background of an inIAB deletion mutant to identify new adhesion determinants in Listeria monocytogenes. Four insertion mutants defective in adhesion to eukaryotic cells were identified. Insertion sites were cloned by inverse-PCR and sequenced. The genetic organization of insertion regions was further analysed by screening and sequencing DNA fragments from a HindIII library and by searching databases. Three adhesion-defective mutants each had one copy of Tn1545 inserted into their chromosome. The insertion sites were different in the three mutants: (i) upstream from two ORFs in tandem, similar to dfp and priA of Bacillus subtilis, respectively; (ii) within an ORF encoding a putative 126 amino-acid-polypeptide with no significant similarity to any known protein; (iii) within an ORF similar to a B. subtilis ORF with no known function, just upstream from an operon similar to an ABC (ATP-binding cassette) transporter operon from B. subtilis. The excisants obtained from these mutants using the excision reporter plasmid pTCR9 recovered full adhesion capacity. A fourth mutant was the most severely defective in adhesion. It had five Tn1545 insertions, one of which was upstream from dfp and priA, and another of which was upstream from ami, a gene encoding a surface-exposed autolysin with a C terminus similar to that of InIB. Ami was clearly involved because an ami null mutant constructed in an EGDdeltainIA-F background was adhesion-defective. Thus new regions involved in the adhesion of L. monocytogenes to eukaryotic cells were identified. Further study is required to define more accurately the roles of these regions in the adhesion process itself.


Assuntos
Aderência Bacteriana/genética , Células Eucarióticas/microbiologia , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Western Blotting , Clonagem Molecular , Elementos de DNA Transponíveis , Humanos , Listeriose/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Mutagênese Insercional , Óperon , Análise de Sequência de DNA , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA