Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(9): 2207-2223, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32495947

RESUMO

Isoprene is a C5 volatile organic compound, which can protect aboveground plant tissue from abiotic stress such as short-term high temperatures and accumulation of reactive oxygen species (ROS). Here, we uncover new roles for isoprene in the plant belowground tissues. By analysing Populus x canescens isoprene synthase (PcISPS) promoter reporter plants, we discovered PcISPS promoter activity in certain regions of the roots including the vascular tissue, the differentiation zone and the root cap. Treatment of roots with auxin or salt increased PcISPS promoter activity at these sites, especially in the developing lateral roots (LR). Transgenic, isoprene non-emitting poplar roots revealed an accumulation of O2- in the same root regions where PcISPS promoter activity was localized. Absence of isoprene emission, moreover, increased the formation of LRs. Inhibition of NAD(P)H oxidase activity suppressed LR development, suggesting the involvement of ROS in this process. The analysis of the fine root proteome revealed a constitutive shift in the amount of several redox balance, signalling and development related proteins, such as superoxide dismutase, various peroxidases and linoleate 9S-lipoxygenase, in isoprene non-emitting poplar roots. Together our results indicate for isoprene a ROS-related function, eventually co-regulating the plant-internal signalling network and development processes in root tissue.


Assuntos
Butadienos/metabolismo , Hemiterpenos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Células Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Compostos Orgânicos Voláteis/metabolismo
2.
PLoS One ; 10(8): e0136234, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26291081

RESUMO

Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large-scale gene expression studies across different species induce of a core set of genes of similar functions. However, additional factors seem to influence the overall pattern of gene expression, resulting in high variability among independent studies with different hosts. We conclude that VIGS is a powerful tool with which to investigate the function of genes involved in plant-AMF interactions but that inoculum strength can strongly influence the outcome of the interaction.


Assuntos
Inativação Gênica , Glomeromycota/fisiologia , Micorrizas/fisiologia , Nicotiana/fisiologia , Vírus de Plantas/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Glomeromycota/genética , Micorrizas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Vírus de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA