Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 47(5): 1131-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27020195

RESUMO

The red algal order Bangiales has been revised as a result of detailed regional studies and the development of expert local knowledge of Bangiales floras, followed by collaborative global analyses based on wide taxon sampling and molecular analyses. Combined analyses of the nuclear SSU rRNA gene and the plastid RUBISCO LSU (rbcL) gene for 157 Bangiales taxa have been conducted. Fifteen genera of Bangiales, seven filamentous and eight foliose, are recognized. This classification includes five newly described and two resurrected genera. This revision constitutes a major change in understanding relationships and evolution in this order. The genus Porphyra is now restricted to five described species and a number of undescribed species. Other foliose taxa previously placed in Porphyra are now recognized to belong to the genera Boreophyllum gen. nov., Clymene gen. nov., Fuscifolium gen. nov., Lysithea gen. nov., Miuraea gen. nov., Pyropia, and Wildemania. Four of the seven filamentous genera recognized in our analyses already have generic names (Bangia, Dione, Minerva, and Pseudobangia), and are all currently monotypic. The unnamed filamentous genera are clearly composed of multiple species, and few of these species have names. Further research is required: the genus to which the marine taxon Bangia fuscopurpurea belongs is not known, and there are also a large number of species previously described as Porphyra for which nuclear SSU ribosomal RNA (nrSSU) or rbcL sequence data should be obtained so that they can be assigned to the appropriate genus.

2.
BMC Evol Biol ; 8: 308, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18992156

RESUMO

BACKGROUND: Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. RESULTS: Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. CONCLUSION: The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG do not refrain intron self-splicing. To our knowledge, this was the first study to address intraspecific evolutionary history of a nuclear group I intron; to use nuclear, mitochondrial and chloroplast DNA for population level analyses of Porphyra; and intron size polymorphism as a marker for population genetics.


Assuntos
Endonucleases/genética , Genética Populacional , Íntrons , Porphyra/genética , Animais , Sequência de Bases , Clonagem Molecular , DNA Ribossômico/genética , Evolução Molecular , Haplótipos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Auto-Splicing de RNA Ribossômico/genética , Subunidades Ribossômicas Menores/genética , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...