Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 25(4): 3621-3638, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241575

RESUMO

We present a model for quasi-phase matching (QPM) in high-order harmonic generation (HHG). Using a one-dimensional description, we analyze the time-dependent, ultrafast wave-vector balance to calculate the on-axis harmonic output versus time, from which we obtain the output pulse energy. Considering, as an example, periodically patterned argon gas, as may be provided with a grid in a cluster jet, we calculate the harmonic output during different time intervals within the drive laser pulse duration. We find that identifying a suitable single spatial period is not straightforward due to the complex and ultrafast plasma dynamics that underlies HHG at increased intensities. The maximum on-axis harmonic pulse energy is obtained when choosing the QPM period to phase match HHG at the leading edge of the drive laser pulse.

2.
Opt Express ; 24(2): 1604-15, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832538

RESUMO

We experimentally investigate spectral control of high-harmonic generation in a wide-diameter (508 µm) capillary that allows using significantly lower gas pressures coupled with elevated drive laser energies to achieve higher harmonic energies. Using phase shaping to change the linear chirp of the drive laser pulses, we observe wavelength tuning of the high-harmonic output to both larger and smaller values. Comparing tuning via the gas pressure with the amount of blue shift in the transmitted drive laser spectrum, we conclude that both adiabatic and non-adiabatic effects cause pulse-shaping induced tuning of high harmonics. We obtain a fractional wavelength tuning, Δλ/λ, in the range from -0.007 to + 0.01, which is comparable to what is achieved with standard capillaries of smaller diameter and higher pressures.

3.
Opt Express ; 23(19): 24888-902, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406689

RESUMO

For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide.

4.
Phys Rev Lett ; 88(23): 234801, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12059368

RESUMO

We report the first measurements of z-dependent coherent optical transition radiation (COTR) due to electron-beam microbunching at high gains ( >10(4)) including saturation of a self-amplified spontaneous emission free-electron laser (FEL). In these experiments the fundamental wavelength was near 530 nm, and the COTR spectra exhibit the transition from simple spectra to complex spectra ( 5% spectral width) after saturation. The COTR intensity growth and angular distribution data are reported as well as the evidence for transverse spectral dependencies and an "effective" core of the beam being involved in microbunching.

5.
Science ; 292(5524): 2037-41, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11358995

RESUMO

Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...