Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(4): 866-879, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36437738

RESUMO

The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aß)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2 EGFP/f/f (AD model) and CB2 EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2 EGFP/f/f , but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Canabinoides , Masculino , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Neuroglia/metabolismo , Microglia/metabolismo , Hipocampo/metabolismo , Placa Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Histochem Cell Biol ; 158(6): 561-569, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35852615

RESUMO

The cannabinoid CB1 receptor-mediated functions in astrocytes are highly dependent on the CB1 receptor distribution in these glial cells relative to neuronal sites, particularly at the nearby synapses under normal or pathological conditions. However, the portrait of the CB1 receptor distribution in astroglial compartments remains uncompleted because of the scarce CB1 receptor expression in these cells and the limited identification of astrocytes. The glial fibrillary acidic protein (GFAP) is commonly used as astroglial marker. However, because GFAP is a cytoskeleton protein mostly restricted to the astroglial cell bodies and their main branches, it seems not ideal for the localization of CB1 receptor distribution in astrocytes. Therefore, alternative markers to decipher the actual astroglial CB1 receptors are required. In this work, we have compared the glutamate aspartate transporter (GLAST) versus GFAP for the CB1 receptor localization in astrocytes. We found by immunoelectron microscopy that GLAST reveals almost three-fold astroglial area and four-fold astroglial membranes compared to GFAP. In addition, this better visualization of astrocytes was associated with the detection of 12% of the total CB1 receptor labeling in GLAST-positive astrocytes.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Astrócitos , Proteína Glial Fibrilar Ácida , Receptores de Canabinoides
3.
Biomedicines ; 9(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356889

RESUMO

Binge drinking (BD) is a serious health concern in adolescents as high ethanol (EtOH) consumption can have cognitive sequelae later in life. Remarkably, an enriched environment (EE) in adulthood significantly recovers memory in mice after adolescent BD, and the endocannabinoid, 2-arachydonoyl-glycerol (2-AG), rescues synaptic plasticity and memory impaired in adult rodents upon adolescent EtOH intake. However, the mechanisms by which EE improves memory are unknown. We investigated this in adolescent male C57BL/6J mice exposed to a drinking in the dark (DID) procedure four days per week for a duration of 4 weeks. After DID, the mice were nurtured under an EE for 2 weeks and were subjected to the Barnes Maze Test performed the last 5 days of withdrawal. The EE rescued memory and restored the EtOH-disrupted endocannabinoid (eCB)-dependent excitatory long-term depression at the dentate medial perforant path synapses (MPP-LTD). This recovery was dependent on both the cannabinoid CB1 receptor and group I metabotropic glutamate receptors (mGluRs) and required 2-AG. Also, the EE had a positive effect on mice exposed to water through the transient receptor potential vanilloid 1 (TRPV1) and anandamide (AEA)-dependent MPP long-term potentiation (MPP-LTP). Taken together, EE positively impacts different forms of excitatory synaptic plasticity in water- and EtOH-exposed brains.

4.
Front Neuroanat ; 15: 645940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692673

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.

5.
J Comp Neurol ; 529(9): 2332-2346, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368252

RESUMO

The use and abuse of cannabis can be associated with significant pathophysiology, however, it remains unclear whether (1) acute administration of Δ-9-tetrahydrocannabinol (THC) during early adulthood alters the cannabinoid type 1 (CB1 ) receptor localization and expression in cells of the brain, and (2) THC produces structural brain changes. Here we use electron microscopy and a highly sensitive pre-embedding immunogold method to examine CB1 receptors in the hippocampus cornu ammonis subfield 1 (CA1) 30 min after male mice were exposed to a single THC injection (5 mg/kg). The findings show that acute exposure to THC can significantly decrease the percentage of CB1 receptor immunopositive terminals making symmetric synapses, mitochondria, and astrocytes. The percentage of CB1 receptor-labeled terminals forming asymmetric synapses was unaffected. Lastly, CB1 receptor expression was significantly lower at terminals of symmetric and asymmetric synapses as well as in mitochondria. Structurally, CA1 dendrites were significantly larger, and contained more spines and mitochondria following acute THC administration. The area of the dendritic spines, synaptic terminals, mitochondria, and astrocytes decreased significantly following acute THC exposure. Altogether, these results indicate that even a single THC exposure can have a significant impact on CB1 receptor expression, and can alter CA1 ultrastructure, within 30 min of drug exposure. These changes may contribute to the behavioral alterations experienced by young individuals shortly after cannabis intoxication.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/ultraestrutura , Agonistas de Receptores de Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Receptor CB1 de Canabinoide/biossíntese , Receptor CB1 de Canabinoide/ultraestrutura , Fatores Etários , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor CB1 de Canabinoide/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...