Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 395(2): 159-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38082139

RESUMO

Prosaposin (PSAP), a potent neurotrophic factor, is found in neuronal and non-neuronal tissues and various biological fluids. Neuropathological conditions often alter PSAP production in neural tissues. However, little is known about its alterations in non-neural tissues, particularly in the salivary glands, which are natural reservoirs of various neurotrophic factors. In this study, we explored whether neurotoxic stimulation by kainic acid (KA), a glutamate analog, altered PSAP levels in the salivary system of rats. The results revealed that KA injection did not alter total saliva production. However, KA-induced neurotoxic stimulation significantly increased the PSAP level in the secreted saliva but decreased it in the serum. In addition, KA-induced elevated immunoreactivities of PSAP and its receptors have been observed in the granular convoluted tubule (GCT) cells of the submandibular gland (SMG), a major salivary secretory organ. Indeed, a large number of PSAP-expressing immunogold particles were observed in the secretory granules of the SMG. Furthermore, KA-induced overexpression of PSAP was co-localized with secretogranin in secretory acini (mostly in GCT cells) and the ductal system of the SMG, suggesting the release of excess PSAP from the salivary glands into the oral cavity. In conclusion, the salivary system produces more PSAP during neurotoxic conditions, which may play a protective role in maintaining the secretory function of the salivary glands and may work in distant organs.


Assuntos
Glândulas Salivares , Saposinas , Ratos , Animais , Glândula Submandibular , Saliva , Proteínas de Transporte
2.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768541

RESUMO

The oral cavity is the second most colonized site of Helicobacter pylori after the stomach. This study aimed to compare the genetic relatedness between gastric and oral H. pylori in Japanese patients with early gastric cancer through multilocus sequence typing (MLST) analysis using eight housekeeping genes. Gastric biopsy specimens and oral samples were collected from 21 patients with a fecal antigen test positive for H. pylori. The number of H. pylori allelic profiles ranged from zero to eight since the yield of DNA was small even when the nested PCR was performed. MLST analysis revealed that only one patient had a matching oral and gastric H. pylori genotype, suggesting that different genotypes of H. pylori inhabit the oral cavity and gastric mucosa. The phylogenetic analysis showed that oral H. pylori in six patients was similar to gastric H. pylori, implying that the two strains are related but not of the same origin, and those strains may be infected on separate occasions. It is necessary to establish a culture method for oral H. pylori to elucidate whether the oral cavity acts as the source of gastric infection, as our analysis was based on a limited number of allele sequences.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Boca , Neoplasias Gástricas , Estômago , Humanos , Genótipo , Infecções por Helicobacter/complicações , Helicobacter pylori/genética , Tipagem de Sequências Multilocus , Filogenia , Neoplasias Gástricas/genética , Boca/microbiologia , Estômago/microbiologia
3.
Nat Commun ; 12(1): 2085, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837194

RESUMO

Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen's adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160's targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis.


Assuntos
Adaptação Fisiológica/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Neoplasias Gástricas/microbiologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Carcinogênese , Modelos Animais de Doenças , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/genética , Gerbillinae , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Mutação , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , RNA-Seq , Neoplasias Gástricas/patologia
4.
Helicobacter ; 26(3): e12798, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33818862

RESUMO

BACKGROUND: Whereas non-Helicobacter pylori helicobacters, which are frequently detected in the stomachs of dogs and cats as a source of zoonoses, have attracted considerable attention, the role of pets in H. pylori epidemiology is unclear. In our previous study, an H. pylori infection was detected in the stomach of a dog (Dog 1). Here, we investigated the H. pylori infection status in the female offspring of Dog 1 (Dog 2) and its owner within the same household. MATERIALS AND METHODS: Biopsy specimens were obtained from the dog's owner and tested for H. pylori. DNA from gastric biopsy samples of Dog 1, gastric fluid sediment of Dog 2, and bacteria from the stomach of the owner was obtained, and Helicobacter genus- and species-specific PCRs were performed. Then, sequence analyses of the partial region of the ureAB gene were conducted. RESULTS: Samples from both dogs and the owner reacted positively in the genus-specific PCR and negative in the Helicobacter felis-, Helicobacter bizzozeronii-, and Helicobacter heilmannii sensu stricto-specific PCRs. All three samples also reacted positively in the H. pylori-specific PCR. Sequences of the partial ureAB gene from all subjects were identical. CONCLUSIONS: The results suggested that the two dogs and their owner were infected with an identical H. pylori strain. This report is the first to demonstrate that H. pylori can be transmitted between humans and dogs. Further studies are required to investigate the risk factors for the transmission of H. pylori between humans and dogs from the perspective of preventive epidemiology.


Assuntos
Doenças do Cão , Infecções por Helicobacter , Helicobacter pylori , Animais , Doenças do Cão/virologia , Cães , Feminino , Infecções por Helicobacter/transmissão , Infecções por Helicobacter/veterinária , Humanos
5.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354967

RESUMO

Helicobacter pylori ATCC 43504 is a type strain isolated from a gastric cancer patient in Australia and is commonly used for pathogenicity studies. In this study, we report the complete genome sequence of a strain that can infect gerbils. The data provide a basis for future H. pylori research.

6.
Immunity ; 52(4): 635-649.e4, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32240600

RESUMO

The intestinal microbiota shapes and directs immune development locally and systemically, but little is known about whether commensal microbes in the stomach can impact their immunological microenvironment. Here, we report that group 2 innate lymphoid cells (ILC2s) were the predominant ILC subset in the stomach and show that their homeostasis and effector functions were regulated by local commensal communities. Microbes elicited interleukin-7 (IL-7) and IL-33 production in the stomach, which in turn triggered the propagation and activation of ILC2. Stomach ILC2s were also rapidly induced following infection with Helicobacter pylori. ILC2-derived IL-5 resulted in the production of IgA, which coated stomach bacteria in both specific pathogen-free (SPF) and H. pylori-infected mice. Our study thus identifies ILC2-dependent IgA response that is regulated by the commensal microbiota, which is implicated in stomach protection by eliminating IgA-coated bacteria including pathogenic H. pylori.


Assuntos
Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/patogenicidade , Imunoglobulina A/biossíntese , Interleucina-5/imunologia , Estômago/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Feminino , Regulação da Expressão Gênica , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/imunologia , Imunidade Humoral , Imunidade Inata , Interleucina-33/genética , Interleucina-33/imunologia , Interleucina-5/genética , Interleucina-7/genética , Interleucina-7/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Transdução de Sinais , Estômago/microbiologia , Simbiose/imunologia , Subpopulações de Linfócitos T/classificação
7.
Biochem Biophys Res Commun ; 525(3): 806-811, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32164943

RESUMO

Helicobacter pylori, a pathogenic bacterium that colonizes in the human stomach, harbors DNA repair genes to counter the gastric environment during chronic infection. In addition, H. pylori adapts to the host environment by undergoing antigenic phase variation caused by genomic mutations. The emergence of mutations in nucleotide sequences is one of the major factors underlying drug resistance and genetic diversity in bacteria. However, it is not clear how DNA repair genes contribute to driving the genetic change of H. pylori during chronic infection. To elucidate the physiological roles of DNA repair genes, we generated DNA repair-deficient strains of H. pylori (ΔuvrA, ΔuvrB, ΔruvA, Δnth, ΔmutY, ΔmutS, and Δung). We performed susceptibility testing to rifampicin in vitro and found that ΔmutY exhibited the highest mutation frequency among the mutants. The number of bacteria colonizing the stomach was significantly lower with ΔmutY strain compared with wild-type strains in a Mongolian gerbil model of H. pylori infection. Furthermore, we performed a genomic sequence analysis of the strains isolated from the Mongolian gerbil stomachs eight weeks after infection. We found that the isolated ΔmutY strains exhibited a high frequency of spontaneous G:C to T:A mutations. However, the frequency of phase variations in the ΔmutY strain was almost similar to the wild-type strain. These results suggest that MutY may play a role in modes of gastric environmental adaptation distinct from phase variation.


Assuntos
Adaptação Fisiológica , DNA Glicosilases/genética , Helicobacter pylori/genética , Mutação/genética , Estômago/microbiologia , Animais , Proteínas de Bactérias/genética , Reparo do DNA/genética , Modelos Animais de Doenças , Gerbillinae , Infecções por Helicobacter/microbiologia , Helicobacter pylori/crescimento & desenvolvimento , Taxa de Mutação , NF-kappa B/metabolismo
8.
Sci Rep ; 10(1): 3251, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094510

RESUMO

Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS.


Assuntos
DNA/química , Armadilhas Extracelulares , Faringite/microbiologia , Faringe/microbiologia , Infecções Estreptocócicas/patologia , Animais , Apoptose , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neutrófilos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus pyogenes
9.
Mucosal Immunol ; 13(4): 679-690, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32042052

RESUMO

Infectious colitis is one of the most common health issues worldwide. Microfold (M) cells actively transport luminal antigens to gut-associated lymphoid tissue to induce IgA responses; however, it remains unknown whether M cells contribute to the induction of cellular immune responses. Here we report that M cell-dependent antigen transport plays a critical role in the induction of Th1, Th17, and Th22 responses against gut commensals in the steady state. The establishment of commensal-specific cellular immunity was a prerequisite for preventing bacterial dissemination during enteropathogenic Citrobacter rodentium infection. Therefore, M cell-null mice developed severe colitis with increased bacterial dissemination. This abnormality was associated with mucosal barrier dysfunction. These observations suggest that antigen transport by M cells may help maintain gut immune homeostasis by eliciting antigen-specific cellular immune responses.


Assuntos
Antígenos/imunologia , Antígenos/metabolismo , Colite/etiologia , Colite/metabolismo , Imunidade Celular , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Animais , Colite/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos/imunologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
10.
Microbiol Immunol ; 63(10): 438-443, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31329291

RESUMO

The effects of chalcone and butein on the induction of the superoxide anion (O2 - )-generating system were studied in U937 cells by all-trans retinoic acid (RA). The chalcone skeleton, a common structural motif in them, significantly enhanced the transcription of gp91-phox in an epigenetic manner. In contrast, chalcone and butein showed opposite effects on the induction of the O2 - -generating activity by RA and the expression of gp91-phox protein. Chalcone inhibited, whereas butein promoted, the induction of O2 - -generating activity by RA and the expression of gp91-phox protein. These data raise the possibility that modification of the chalcone skeleton could produce more effective differentiation-promoting agents.


Assuntos
Chalcona/farmacologia , Chalconas/farmacologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Superóxidos/metabolismo , Humanos , Tretinoína/química , Células U937
11.
Nature ; 566(7742): 110-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675063

RESUMO

Small intestinal mononuclear cells that express CX3CR1 (CX3CR1+ cells) regulate immune responses1-5. CX3CR1+ cells take up luminal antigens by protruding their dendrites into the lumen1-4,6. However, it remains unclear how dendrite protrusion by CX3CR1+ cells is induced in the intestine. Here we show in mice that the bacterial metabolites pyruvic acid and lactic acid induce dendrite protrusion via GPR31 in CX3CR1+ cells. Mice that lack GPR31, which was highly and selectively expressed in intestinal CX3CR1+ cells, showed defective dendrite protrusions of CX3CR1+ cells in the small intestine. A methanol-soluble fraction of the small intestinal contents of specific-pathogen-free mice, but not germ-free mice, induced dendrite extension of intestinal CX3CR1+ cells in vitro. We purified a GPR31-activating fraction, and identified lactic acid. Both lactic acid and pyruvic acid induced dendrite extension of CX3CR1+ cells of wild-type mice, but not of Gpr31b-/- mice. Oral administration of lactate and pyruvate enhanced dendrite protrusion of CX3CR1+ cells in the small intestine of wild-type mice, but not in that of Gpr31b-/- mice. Furthermore, wild-type mice treated with lactate or pyruvate showed an enhanced immune response and high resistance to intestinal Salmonella infection. These findings demonstrate that lactate and pyruvate, which are produced in the intestinal lumen in a bacteria-dependent manner, contribute to enhanced immune responses by inducing GPR31-mediated dendrite protrusion of intestinal CX3CR1+ cells.


Assuntos
Bactérias/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Extensões da Superfície Celular/metabolismo , Intestino Delgado/citologia , Intestino Delgado/microbiologia , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bactérias/imunologia , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/imunologia , Feminino , Células HEK293 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Ácido Láctico/farmacologia , Lactobacillus helveticus/metabolismo , Masculino , Metanol , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ácido Pirúvico/farmacologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Salmonella/imunologia , Salmonella/metabolismo
12.
Microbiology (Reading) ; 165(2): 224-232, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30620266

RESUMO

Helicobacter pylori lacks the genes involved in the de novo synthesis of thiamin, and is therefore a thiamin auxotroph. The PnuT transporter, a member of the Pnu transporter family, mediates the uptake of thiamin across the membrane. In the genome of H. pylori, the pnuT gene is clustered with the thiamin pyrophosphokinase gene thi80. In this study, we found that [3H]thiamin is incorporated into the H. pylori SS1 strain via facilitated diffusion with a Km value of 28 µM. The incorporation of radioactive thiamin was inhibited to some extent by 2-methyl-4-amino-5-hydroxymethylpyrimidine or pyrithiamine, but was largely unaffected by thiamin phosphate or thiamin pyrophosphate. RT-PCR analysis demonstrated that the pnuT and thi80 genes are cotranscribed as a single transcript. The estimated Km value for thiamin in the thiamin pyrophosphokinase activity exerted by the recombinant Thi80 protein was 0.40 µM, which is much lower than the Km value of thiamin transport in H. pylori cells. These findings suggested that the incorporated thiamin from the environment is efficiently trapped by pyrophosphorylation to make the transport directional. In addition, the thiamin transport activity in the pnuT-deficient H. pylori strain was less than 20 % of that in the wild-type strain at extracellular thiamin concentration of 1 µM, but the incorporated scintillation signals of the pnuT-deficient strain with 100 nM [3H]thiamin were nearly at the background level. We also found that the pnuT-deficient strain required 100-times more thiamin to achieve growth equal to that of the wild-type. These findings reflect the presence of multiple routes for entry of thiamin into H. pylori, and PnuT is likely responsible for the high-affinity thiamin transport and serves as a target for antimicrobial agents against H. pylori.


Assuntos
Helicobacter pylori/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Tiamina Pirofosfoquinase/metabolismo , Tiamina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Mutação , Óperon , Pirimidinas/farmacologia , Piritiamina/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiamina Pirofosfoquinase/genética
13.
Cell Microbiol ; 21(3): e12974, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30414351

RESUMO

Subversion of antigen-specific immune responses by intracellular pathogens is pivotal for successful colonisation. Bacterial pathogens, including Shigella, deliver effectors into host cells via the type III secretion system (T3SS) in order to manipulate host innate and adaptive immune responses, thereby promoting infection. However, the strategy for subverting antigen-specific immunity is not well understood. Here, we show that Shigella flexneri invasion plasmid antigen H (IpaH) 4.5, a member of the E3 ubiquitin ligase effector family, targets the proteasome regulatory particle non-ATPase 13 (RPN13) and induces its degradation via the ubiquitin-proteasome system (UPS). IpaH4.5-mediated RPN13 degradation causes dysfunction of the 19S regulatory particle (RP) in the 26S proteasome, inhibiting guidance of ubiquitinated proteins to the proteolytically active 20S core particle (CP) of 26S proteasome and thereby suppressing proteasome-catalysed peptide splicing. This, in turn, reduces antigen cross-presentation to CD8+ T cells via major histocompatibility complex (MHC) class I in vitro. In RPN13 knockout mouse embryonic fibroblasts (MEFs), loss of RPN13 suppressed CD8+ T cell priming during Shigella infection. Our results uncover the unique tactics employed by Shigella to dampen the antigen-specific cytotoxic T lymphocyte (CTL) response.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma/metabolismo , Shigella flexneri/crescimento & desenvolvimento , Linfócitos T Citotóxicos/imunologia , Animais , Células Cultivadas , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Disenteria Bacilar/patologia , Humanos , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Filogenia , RNA Ribossômico/genética , Análise de Sequência de DNA , Shigella flexneri/imunologia , Shigella flexneri/patogenicidade , Linfócitos T Citotóxicos/microbiologia , Fatores de Virulência/metabolismo
14.
Commun Biol ; 1: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271919

RESUMO

Small leucine-rich repeat proteoglycan (SLRP) proteins have an important role in the organization of the extracellular matrix, especially in the formation of collagen fibrils. However, the mechanism governing the shape of collagen fibrils is poorly understood. Here, we report that the protein Osteomodulin (OMD) of the SLRP family is a monomeric protein in solution that interacts with type-I collagen. This interaction is dominated by weak electrostatic forces employing negatively charged residues of OMD, in particular Glu284 and Glu303, and controlled by entropic factors. The protein OMD establishes a fast-binding equilibrium with collagen, where OMD may engage not only with individual collagen molecules, but also with the growing fibrils. This weak electrostatic interaction is carefully balanced so it modulates the shape of the fibrils without compromising their viability.

15.
FEBS Open Bio ; 8(4): 671-679, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29632819

RESUMO

Infection with Helicobacter pylori is known to decrease the level of glutathione in gastric epithelial cells and increase the production of reactive oxygen species (ROS), which can lead to DNA damage and the development of gastric cancer. Cation transport regulator 1 (CHAC1) has γ-glutamylcyclotransferase activity that degrades glutathione. We found that cagA-positive H. pylori infection triggered CHAC1 overexpression in human gastric epithelial (AGS) cells leading to glutathione degradation and the accumulation of ROS. Nucleotide alterations in the TP53 tumour suppressor gene were induced in AGS cells overexpressing CHAC1, whereas no mutations were detected in cells overexpressing a catalytically inactive mutant of CHAC1. A high frequency of TP53 mutations occurred in H. pylori-infected AGS cells, but this was prevented in cells transfected with CHAC1 siRNA. These findings indicate that H. pylori-mediated CHAC1 overexpression degrades intracellular glutathione, allowing the accumulation of ROS which subsequently causes mutations that could contribute to the development of gastric cancer.

16.
Helicobacter ; 23(2): e12470, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29488678

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infection causes various gastrointestinal diseases including gastric cancer. Hence, eradication of this infection could prevent these diseases. The most popular first-line treatment protocol to eradicate H. pylori is termed "triple therapy" and consists of a proton pump inhibitor (PPI), clarithromycin, and amoxicillin or metronidazole. However, the antibiotics used to treat H. pylori infection are hindered by the antibiotics-resistant bacteria and by their antimicrobial activity against intestinal bacteria, leading to side effects. Therefore, an alternative treatment with fewer adverse side effects is urgently required to improve the overall eradication rate of H. pylori. OBJECTIVE: The aim of this study was to assess the effectiveness and mechanism of action of an antitumor agent, intervenolin, and its derivatives as an agent for the treatment of H. pylori infection. RESULTS: We demonstrate that intervenolin, and its derivatives showed selective anti-H. pylori activity, including antibiotic-resistant strains, without any effect on intestinal bacteria. We showed that dihydroorotate dehydrogenase, a key enzyme for de novo pyrimidine biosynthesis, is a target and treatment with intervenolin or its derivatives decreased the protein and mRNA levels of H. pylori urease, which protects H. pylori against acidic conditions in the stomach. Using a mouse model of H. pylori infection, oral monotherapy with the intervenolin derivative AS-1934 had a stronger anti-H. pylori effect than the triple therapy commonly used worldwide to eradicate H. pylori. CONCLUSION: AS-1934 has potential advantages over current treatment options for H. pylori infection.


Assuntos
Infecções por Helicobacter/tratamento farmacológico , Quinolonas/uso terapêutico , Antibacterianos/uso terapêutico , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/patogenicidade , Humanos , Resultado do Tratamento
17.
Microbiol Immunol ; 62(4): 221-228, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29446491

RESUMO

Helicobacter pylori (H. pylori), a gram-negative microaerophilic bacterial pathogen that colonizes the stomachs of more than half of all humans, is linked to chronic gastritis, peptic ulcers and gastric cancer. Spiral-shaped H. pylori undergo morphologic conversion to a viable but not culturable coccoid form when they transit from the microaerobic stomach into the anaerobic intestinal tract. However, little is known about the morphological and pathogenic characteristics of H. pylori under prolonged anaerobic conditions. In this study, scanning electron microscopy was used to document anaerobiosis-induced morphological changes of H. pylori, from helical to coccoid to a newly defined fragmented form. Western blot analysis indicated that all three forms express certain pathogenic proteins, including the bacterial cytotoxin-associated gene A (CagA), components of the cag-Type IV secretion system (TFSS), the blood group antigen-binding adhesin BabA, and UreA (an apoenzyme of urease), almost equally. Similar urease activities were also detected in all three forms of H. pylori. However, in contrast to the helical form, bacterial motility and TFSS activity were found to have been abrogated in the anaerobiosis-induced coccoid and fragmented forms of H. pylori. Notably, it was demonstrated that some of the anaerobiosis-induced fragmented state cells could be converted to proliferation-competent helical bacteria in vitro. These results indicate that prolonged exposure to the anaerobic intestine may not eliminate the potential for H. pylori to revert to the helical pathogenic state.


Assuntos
Proteínas de Bactérias/genética , Helicobacter pylori/citologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Anaerobiose , Antibacterianos , Antígenos de Bactérias/genética , Linhagem Celular , Proliferação de Células , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter/microbiologia , Humanos , Microscopia Eletrônica de Varredura , Sistemas de Secreção Tipo IV/genética , Urease/genética , Fatores de Virulência/genética
18.
Mucosal Immunol ; 11(3): 693-702, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29411777

RESUMO

Alcaligenes are opportunistic commensal bacteria that reside in gut-associated lymphoid tissues such as Peyer's patches (PPs); however, how they create and maintain their homeostatic environment, without inducing an excessive inflammatory response remained unclear. We show here that Alcaligenes-derived lipopolysaccharide (Alcaligenes LPS) acts as a weak agonist of toll-like receptor 4 and promotes IL-6 production from dendritic cells, which consequently enhances IgA production. The inflammatory activity of Alcaligenes LPS was weaker than that of Escherichia coli-derived LPS and therefore no excessive inflammation was induced by Alcaligenes LPS in vitro or in vivo. Alcaligenes LPS also showed adjuvanticity, inducing antigen-specific immune responses without excessive inflammation. These findings reveal the presence of commensal bacteria-mediated homeostatic inflammatory conditions within PPs that produce optimal IgA induction without causing pathogenic inflammation and suggest that Alcaligenes LPS could be a safe and potent adjuvant.


Assuntos
Alcaligenes/imunologia , Células Dendríticas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Inflamação/imunologia , Receptor 4 Toll-Like/agonistas , Adjuvantes Imunológicos , Animais , Formação de Anticorpos , Células Cultivadas , Homeostase , Imunoglobulina A/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
19.
EMBO Rep ; 19(1): 89-101, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191979

RESUMO

Shigella deploys a unique mechanism to manipulate macrophage pyroptosis by delivering the IpaH7.8 E3 ubiquitin ligase via its type III secretion system. IpaH7.8 ubiquitinates glomulin (GLMN) and elicits its degradation, thereby inducing inflammasome activation and pyroptotic cell death of macrophages. Here, we show that GLMN specifically binds cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1 and cIAP2), members of the inhibitor of apoptosis (IAP) family of RING-E3 ligases, which results in reduced E3 ligase activity, and consequently inflammasome-mediated death of macrophages. Importantly, reducing the levels of GLMN in macrophages via IpaH7.8, or siRNA-mediated knockdown, enhances inflammasome activation in response to infection by Shigella, Salmonella, or Pseudomonas, stimulation with NLRP3 inflammasome activators (including SiO2, alum, or MSU), or stimulation of the AIM2 inflammasome by poly dA:dT GLMN binds specifically to the RING domain of both cIAPs, which inhibits their self-ubiquitination activity. These findings suggest that GLMN is a negative regulator of cIAP-mediated inflammasome activation, and highlight a unique Shigella stratagem to kill macrophages, promoting severe inflammation.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Inflamassomos/genética , Proteínas Inibidoras de Apoptose/genética , Macrófagos/microbiologia , Proteínas Musculares/genética , Shigella flexneri/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Regulação da Expressão Gênica , Inflamassomos/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Isoenzimas/genética , Isoenzimas/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/imunologia , Cultura Primária de Células , Ligação Proteica , Piroptose/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Shigella flexneri/crescimento & desenvolvimento , Transdução de Sinais , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/imunologia
20.
Biochem Biophys Res Commun ; 495(1): 1195-1200, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183727

RESUMO

The membrane bound cytochrome b558 composed of gp91-phox and p22-phox proteins, and cytosolic proteins p40-, p47-and p67-phox are important components of superoxide (O2-)-generating system in phagocytes. Here, we describe that resveratrol, a pleiotropic phytochemical belonging to the stilbenoids, dramatically activates the O2--generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and resveratrol, the O2--generating activity increased more than 5-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and resveratrol strongly enhanced transcription of the gp91-phox compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and resveratrol caused remarkable accumulation of protein levels of gp91-phox (to 4-fold), p22-phox (to 5-fold) and p47-phox (to 4-fold) compared with those of the RA-treatment alone. In addition, ChIP assay suggested that resveratrol participates in enhancing the gene expression of gp91-phox via promoting acetylation of Lys-9 residues and Lys-14 residues of histone H3 within chromatin around the promoter regions of the gene. These results suggested that resveratrol strongly enhances the RA-induced O2--generating activity via up-regulation of gp91-phox gene expression in U937 cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , Neoplasias Experimentais/metabolismo , Estilbenos/administração & dosagem , Superóxidos/metabolismo , Tretinoína/metabolismo , Relação Dose-Resposta a Droga , Humanos , Resveratrol , Células U937 , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...