Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167893

RESUMO

For complex and multi-layered clastic oil reservoir formations, modeling lithofacies and petrophysical parameters is essential for reservoir characterization, history matching, and uncertainty quantification. This study introduces a real oilfield case study that conducted high-resolution geostatistical modeling of 3D lithofacies and petrophysical properties for rapid and reliable history matching of the Luhais oil reservoir in southern Iraq. For capturing the reservoir's tidal depositional setting using data collected from 47 wells, the lithofacies distribution (sand, shaly sand, and shale) of a 3D geomodel was constructed using sequential indicator simulation (SISIM). Based on the lithofacies modeling results, 50 sets of porosity and permeability distributions were generated using sequential Gaussian simulation (SGSIM) to provide insight into the spatial geological uncertainty and stochastic history matching. For each rock type, distinct variograms were created in the 0° azimuth direction, representing the shoreface line. The standard deviation between every pair of spatial realizations justified the number of variograms employed. An upscaled version of the geomodel, incorporating the lithofacies, permeability, and porosity, was used to construct a reservoir-flow model capable of providing rapid, accurate, and reliable production history matching, including well and field production rates.

2.
Sci Rep ; 11(1): 2082, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654158

RESUMO

Combined carbon capture and storage and CO2-enhanced oil recovery (CCS-EOR) can reconcile the demands of business with the need to mitigate the effects of climate change. To improve the performance of CCS-EOR, liquefied petroleum gas (LPG) can be co-injected with CO2, leading to a reduction in the minimum miscibility pressure. However, gas injection can cause asphaltene problems, which undermines EOR and CCS performances simultaneously. Here, we systematically examine the mechanisms of asphaltene deposition using compositional simulations during CO2-LPG-comprehensive water-alternating-gas (WAG) injection. The LPG accelerates asphaltene deposition, reducing gas mobility, and increases the performance of residual trapping by 9.2% compared with CO2 WAG. In contrast, solubility trapping performance declines by only 3.7% because of the greater reservoir pressure caused by the increased formation damage. Adding LPG enhances oil recovery by 11% and improves total CCS performance by 9.1% compared with CO2 WAG. Based on reservoir simulations performed with different LPG concentrations and WAG ratios, we confirmed that the performance improvement of CCS-EOR associated with increasing LPG and water injection reaches a plateau. An economic evaluation based on the price of LPG should be carried out to ensure practical success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA