RESUMO
BACKGROUND: Zoonotic sporotrichosis is a neglected fungal disease, whereby outbreaks are primarily driven by Sporothrix brasiliensis and linked to cat-to-human transmission. To understand the emergence and spread of sporotrichosis in Brazil, the epicentre of the current epidemic in South America, we aimed to conduct whole-genome sequencing (WGS) to describe the genomic epidemiology. METHODS: In this genomic epidemiology study, we included Sporothrix spp isolates from sporotrichosis cases from Brazil, Colombia, and the USA. We conducted WGS using Illumina NovaSeq on isolates collected by three laboratories in Brazil from humans and cats with sporotrichosis between 2013 and 2022. All isolates that were confirmed to be Sporothrix genus by internal transcribed spacer or beta-tubulin PCR sequencing were included in this study. We downloaded eight Sporothrix genome sequences from the National Center for Biotechnology Information (six from Brazil, two from Colombia). Three Sporothrix spp genome sequences from the USA were generated by the US Centers for Disease Control and Prevention as part of this study. We did phylogenetic analyses and correlated geographical and temporal case distribution with genotypic features of Sporothrix spp isolates. FINDINGS: 72 Sporothrix spp isolates from 55 human and 17 animal sporotrichosis cases were included: 67 (93%) were from Brazil, two (3%) from Colombia, and three (4%) from the USA. Cases spanned from 1999 to 2022. Most (61 [85%]) isolates were S brasiliensis, and all were reported from Brazil. Ten (14%) were Sporothrix schenckii and were reported from Brazil, USA, and Colombia. For S schenckii isolates, two distinct clades were observed wherein isolates clustered by geography. For S brasiliensis isolates, five clades separated by more than 100 000 single-nucleotide polymorphisms were observed. Among the five S brasiliensis clades, clades A and C contained isolates from both human and cat cases, and clade A contained isolates from six different states in Brazil. Compared with S brasiliensis isolates, larger genetic diversity was observed among S schenckii isolates from animal and human cases within a clade. INTERPRETATION: Our results suggest that the ongoing epidemic driven by S brasiliensis in Brazil represents several, independent emergence events followed by animal-to-animal and animal-to human transmission within and between Brazilian states. These results describe how S brasiliensis can emerge and spread within a country. FUNDING: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil; the São Paulo Research Foundation; Productivity in Research fellowships by the National Council for Scientific and Technological Development, and Ministry of Science and Technology of Brazil.
Assuntos
Sporothrix , Esporotricose , Animais , Humanos , Esporotricose/epidemiologia , Esporotricose/veterinária , Esporotricose/microbiologia , Brasil/epidemiologia , Filogenia , Surtos de Doenças , Genômica , Sporothrix/genéticaRESUMO
Since 2016, in Colombia, ongoing transmission of Candida auris has been reported in multiple cities. Here, we provide an updated description of C. auris genomic epidemiology and the dynamics of antifungal resistance in Colombia. We sequenced 99 isolates from C. auris cases with collection dates ranging from June 2016 to January 2021; the resulting sequences coupled with 103 previously generated sequences from C. auris cases were described in a phylogenetic analysis. All C. auris cases were clade IV. Of the 182 isolates with antifungal susceptibility data, 67 (37%) were resistant to fluconazole, and 39 (21%) were resistant to amphotericin B. Isolates predominately clustered by country except for 16 isolates from Bogotá, Colombia, which grouped with isolates from Venezuela. The largest cluster (N = 166 isolates) contained two subgroups. The first subgroup contained 26 isolates, mainly from César; of these, 85% (N = 22) were resistant to fluconazole. The second subgroup consisted of 47 isolates from the north coast; of these, 81% (N = 38) were resistant to amphotericin B. Mutations in the ERG11 and TAC1B genes were identified in fluconazole-resistant isolates. This work describes molecular mechanisms associated with C. auris antifungal resistance in Colombia. Overall, C. auris cases from different geographic locations in Colombia exhibited high genetic relatedness, suggesting continued transmission between cities since 2016. These findings also suggest a lack of or minimal introductions of different clades of C. auris into Colombia. IMPORTANCE: Candida auris is an emerging fungus that presents a serious global health threat and has caused multiple outbreaks in Colombia. This work discusses the likelihood of introductions and local transmission of C. auris and provides an updated description of the molecular mechanisms associated with antifungal resistance in Colombia. Efforts like this provide information about the evolving C. auris burden that could help guide public health strategies to control C. auris spread.