Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(6): 391, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391432

RESUMO

Phagocytosis of apoptotic cells, called efferocytosis, requires calcium inside and outside of phagocytes. Due to its necessity, calcium flux is sophisticatedly modulated, and the level of intracellular calcium in phagocytes is ultimately elevated during efferocytosis. However, the role of elevated intracellular calcium in efferocytosis remains elusive. Here, we report that Mertk-mediated intracellular calcium elevation is necessary for internalization of apoptotic cells during efferocytosis. Drastic depletion of intracellular calcium abrogated the internalization step of efferocytosis by delaying phagocytic cup extension and closure. Especially, the defect of phagocytic cup closure for internalization of apoptotic cells was caused by impaired F-actin disassembly and the attenuated interaction of Calmodulin with myosin light chain kinase (MLCK), leading to diminished myosin light chain (MLC) phosphorylation. Genetic and pharmacological impairment of the Calmodulin-MLCK-MLC axis or Mertk-mediated calcium influx also resulted in inefficient efferocytosis due to a defect in internalization of the targets. Taken together, our observations imply that intracellular calcium elevation through Mertk-mediated calcium influx facilitates efferocytosis by inducing myosin II-mediated contraction and F-actin disassembly required for internalization of apoptotic cells.


Assuntos
Cálcio , Calmodulina , Actinas , Fagocitose , c-Mer Tirosina Quinase/genética , Apoptose
2.
ACS Sens ; 7(12): 3933-3939, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36503238

RESUMO

Simultaneous detection, which helps understand complex physiological processes and accurately diagnose diseases, has been achieved using dual responsive probes. The dual responsive probe can ideally distinguish four cases, which are a combination of the absence and presence of two analytes, with characteristic fluorescence emissions. Owing to the demanding conditions of its development, most previous studies have focused on the simple linkage between small-molecule chemosensors that have an individual target and spectral range. In this study, a new dual responsive detection platform, oligonucleotide-chemosensor conjugate, was developed using a linkage between versatile oligonucleotide probes and small-molecule chemosensors to expand the applicable scaffold and detectable target for simultaneous detection. As a proof of concept, the ATP aptamer probe and Zn2+ chemosensor were conjugated as the levels of ATP and Zn2+ are intimately correlated in several signaling pathways and diseases. Each probe could detect an analyte independently within a conjugate probe, and simultaneous detection was also demonstrated without spectral crosstalk or interference between the receptors. In addition, the introduced cholesterol modification allowed the developed probe to detect changes in analytes on the plasma membrane of live cells through flow cytometry and confocal microscopy.


Assuntos
Corantes Fluorescentes , Oligonucleotídeos , Zinco , Trifosfato de Adenosina
3.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831339

RESUMO

Apoptotic cells generated during development and for tissue homeostasis are swiftly and continuously removed by phagocytes via a process called efferocytosis. Efficient efferocytosis can be achieved via transcriptional modulation in phagocytes that have engulfed apoptotic cells. However, such modulation and its effect on efferocytosis are not completely understood. Here, we report that phagocytes are recruited to apoptotic cells being cleared through the Mcp-1-Ccr2 axis, which facilitates clearance of apoptotic cells. We identified Mcp-1 as a modulated transcript using a microarray and found that Mcp-1 secretion was augmented in phagocytes engulfing apoptotic cells. This augmented Mcp-1 secretion was impaired by blocking phagolysosomal degradation of apoptotic cells. Conditioned medium from wild type (WT) phagocytes promoted cell migration, but that from Mcp-1-/- phagocytes did not. In addition, blockade of Ccr2, the receptor for Mcp-1, abrogated cell migration to conditioned medium from phagocytes incubated with apoptotic cells. The intrinsic efferocytosis activity of Mcp-1-/- and Ccr2-/- phagocytes was unaltered, but clearance of apoptotic cells was less efficient in the peritoneum of Mcp-1-/- and Ccr2-/- mice than in that of WT mice because fewer Ccr2-positive phagocytes were recruited. Taken together, our findings demonstrate a mechanism by which not only apoptotic cells but also phagocytes induce chemoattraction to recruit phagocytes to sites where apoptotic cells are cleared for efficient efferocytosis.


Assuntos
Quimiocina CCL2/metabolismo , Quimiotaxia , Fagócitos/citologia , Fagocitose , Receptores CCR2/metabolismo , Transdução de Sinais , Ácidos/metabolismo , Animais , Apoptose , Meios de Cultivo Condicionados/farmacologia , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL
4.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685684

RESUMO

Swift and continuous phagocytosis of apoptotic cells can be achieved by modulation of calcium flux in phagocytes. However, the molecular mechanism by which apoptotic cells modulate calcium flux in phagocytes is incompletely understood. Here, using biophysical, biochemical, pharmaceutical, and genetic approaches, we show that apoptotic cells induced the Orai1-STIM1 interaction, leading to store-operated calcium entry (SOCE) in phagocytes through the Mertk-phospholipase C (PLC) γ1-inositol 1,4,5-triphosphate receptor (IP3R) axis. Apoptotic cells induced calcium release from the endoplasmic reticulum, which led to the Orai1-STIM1 association and, consequently, SOCE in phagocytes. This association was attenuated by masking phosphatidylserine. In addition, the depletion of Mertk, which indirectly senses phosphatidylserine on apoptotic cells, reduced the phosphorylation levels of PLCγ1 and IP3R, resulting in attenuation of the Orai1-STIM1 interaction and inefficient SOCE upon apoptotic cell stimulation. Taken together, our observations uncover the mechanism of how phagocytes engulfing apoptotic cells elevate the calcium level.


Assuntos
Apoptose , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Fagócitos/citologia , Fagócitos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Endocitose , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosfolipase C gama/metabolismo , Ligação Proteica , Células RAW 264.7 , Transdução de Sinais , c-Mer Tirosina Quinase/metabolismo
5.
Mol Cells ; 44(4): 214-222, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33935042

RESUMO

Phosphatidylserine (PS), a negatively charged phospholipid exclusively located in the inner leaflet of the plasma membrane, is involved in various cellular processes such as blood coagulation, myoblast fusion, mammalian fertilization, and clearance of apoptotic cells. Proteins that specifically interact with PS must be identified to comprehensively understand the cellular processes involving PS. However, only a limited number of proteins are known to associate with PS. To identify PS-associating proteins, we performed a pulldown assay using streptavidin-coated magnetic beads on which biotin-linked PS was immobilized. Using this approach, we identified Hsd17b4, a peroxisomal protein, as a PS-associating protein. Hsd17b4 strongly associated with PS, but not with phosphatidylcholine or sphingomyelin, and the Scp-2-like domain of Hsd17b4 was responsible for this association. The association was disrupted by PS in liposomes, but not by free PS or the components of PS. In addition, translocation of PS to the outer leaflet of the plasma membrane enriched Hsd17b4 in peroxisomes. Collectively, this study suggests an unexpected role of PS as a regulator of the subcellular localization of Hsd17b4.


Assuntos
Proteína Multifuncional do Peroxissomo-2/metabolismo , Peroxissomos/metabolismo , Fosfatidilserinas/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Cells ; 10(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808656

RESUMO

Alternative splicing (AS) is an important posttranscriptional regulatory process. Damaged or unnecessary cells need to be removed though apoptosis to maintain physiological processes. Caspase-2 pre-mRNA produces pro-apoptotic long mRNA and anti-apoptotic short mRNA isoforms through AS. How AS of Caspase-2 is regulated remains unclear. In the present study, we identified a novel regulatory protein SRSF9 for AS of Caspase-2 cassette exon 9. Knock-down (KD) of SRSF9 increased inclusion of cassette exon and on the other hand, overexpression of SRSF9 decreased inclusion of this exon. Deletion mutagenesis demonstrated that exon 9, parts of intron 9, exon 8 and exon 10 were not required for the role of SRSF9 in Caspase-2 AS. However, deletion and substitution mutation analysis revealed that AGGAG sequence located at exon 10 provided functional target for SRSF9. In addition, RNA-pulldown mediated immunoblotting analysis showed that SRSF9 interacted with this sequence. Gene ontology analysis of RNA-seq from SRSF9 KD cells demonstrates that SRSF9 could regulate AS of a subset of apoptosis related genes. Collectively, our results reveal a basis for regulation of Caspase-2 AS.


Assuntos
Caspase 2/metabolismo , Éxons/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Caspase 2/genética , Linhagem Celular Tumoral , Humanos , Precursores de RNA/genética , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Transcrição/metabolismo
7.
Nat Commun ; 11(1): 5489, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127885

RESUMO

Calcium flux regulating intracellular calcium levels is essential and modulated for efficient efferocytosis. However, the molecular mechanism by which calcium flux is modulated during efferocytosis remains elusive. Here, we report that Orai1, a Crbn substrate, is upregulated via its attenuated interaction with Crbn during efferocytosis, which increases calcium influx into phagocytes and thereby promotes efferocytosis. We found that Crbn deficiency promoted phagocytosis of apoptotic cells, which resulted from facilitated phagocytic cup closure and was nullified by a CRAC channel inhibitor. In addition, Orai1 associated with Crbn, resulting in ubiquitination and proteasomal degradation of Orai1 and alteration of SOCE-mediated calcium influx. The association of Orai1 with Crbn was attenuated during efferocytosis, leading to reduced ubiquitination of Orai1 and consequently upregulation of Orai1 and calcium influx. Collectively, our study reveals a regulatory mechanism by which calcium influx is modulated by a Crbn-Orai1 axis to facilitate efferocytosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Ubiquitina-Proteína Ligases/genética
8.
Cell Death Dis ; 11(7): 561, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703939

RESUMO

The phosphatidylserine (PS) receptor Tim-4 mediates phagocytosis of apoptotic cells by binding to PS exposed on the surface of these cells, and thus functions as a PS receptor for apoptotic cells. Some of PS receptors are capable of recognizing other molecules, such as LPS on bacteria, besides PS on apoptotic cells. However, it is unclear whether Tim-4 perceives other molecules like the PS receptors. Here, we report that Tim-4 facilitates the phagocytosis of exogenous particles as well as apoptotic cells. Similar to the process that occurs during Tim-4-mediated efferocytosis, the uptake of exogenous E. coli and S. aureus bioparticles was promoted by overexpression of Tim-4 on phagocytes, whereas phagocytosis of the bioparticles was reduced in Tim-4-deficient cells. A truncation mutant of Tim-4 lacking the cytoplasmic tail promoted phagocytosis of the particles, but a mutant lacking the IgV or the mucin domain failed to enhance phagocytosis. However, expression of Tim-4AAA (a mutant form of Tim-4 that does not bind phosphatidylserine and does not promote efferocytosis) still promoted phagocytosis. Tim-4-mediated phagocytosis was not blocked by expression of the phosphatidylserine-binding protein Anxa5. Furthermore, binding of lipopolysaccharide (LPS), which is found in the outer membrane of Gram-negative bacteria, was higher in Tim-4-overexpressing cells than in Tim-4-deficient cells. In summary, our study suggests that Tim-4 acts as a scavenger receptor and mediates phagocytosis of exogenous particles in a phosphatidylserine-independent manner.


Assuntos
Proteínas de Membrana/metabolismo , Fagocitose , Receptores Depuradores/metabolismo , Animais , Apoptose , Linhagem Celular , Escherichia coli/metabolismo , Proteínas de Membrana/química , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Fosfatidilserinas/metabolismo , Staphylococcus aureus/metabolismo
9.
Cells ; 9(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640697

RESUMO

Apoptotic cells expressing phosphatidylserine (PS) on their cell surface are directly or indirectly recognized by phagocytes through PS-binding proteins. The PS-binding protein Tim-4 secures apoptotic cells to phagocytes to facilitate the engulfment of apoptotic cells. However, the molecular mechanism by which Tim-4 transduces signals to phagocytes during Tim-4-mediated efferocytosis is incompletely understood. Here, we report that Tim-4 collaborates with Mertk during efferocytosis through a biochemical interaction with Mertk. Proximal localization between the two proteins in phagocytes was observed by immunofluorescence and proximal ligation assays. Physical association between Tim-4 and Mertk, which was mediated by an interaction between the IgV domain of Tim-4 and the fibronectin type-III domain of Mertk, was also detected with immunoprecipitation. Furthermore, the effect of Mertk on Tim-4-mediated efferocytosis was abolished by GST-MertkFnIII, a soluble form of the fibronectin type-III domain of Mertk that disrupts the interaction between Tim-4 and Mertk. Taken together, the results from our study suggest that a physical interaction between Tim-4 and Mertk is necessary for Mertk to enhance efferocytosis mediated by Tim-4.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , c-Mer Tirosina Quinase/química , c-Mer Tirosina Quinase/metabolismo , Animais , Domínio de Fibronectina Tipo III/genética , Domínio de Fibronectina Tipo III/fisiologia , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Fagocitose/genética , Fagocitose/fisiologia , Ligação Proteica , c-Mer Tirosina Quinase/genética
10.
Cell Death Differ ; 26(9): 1646-1655, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30451988

RESUMO

An essential step during clearance of apoptotic cells is the recognition of phosphatidylserine (PS) exposed on apoptotic cells by its receptors on phagocytes. Tim-4 directly binding to PS and functioning as a tethering receptor for phagocytosis of apoptotic cells has been extensively studied over the past decade. However, the molecular mechanisms by which Tim-4 collaborates with other engulfment receptors during efferocytosis remain elusive. By comparing efferocytosis induced by Tim-4 with that by Anxa5-GPI, an artificial tethering receptor, we found that Tim-4 possesses auxiliary machinery to induce a higher level of efferocytosis than Anxa5-GPI. To search for that, we performed a yeast two-hybrid screen and identified Fibronectin (Fn1) as a novel Tim-4-associating protein. Tim-4 directly associated with Fn1 and formed a complex with integrins via the association of Fn1. Through Tim-4-/- mice and cell-based assays, we found that modulation of the Fn1 level affected efferocytosis induced by Tim-4 and disruption of the interaction between Tim-4 and Fn1 abrogated Tim-4-mediated efferocytosis. In addition, Tim-4 depletion attenuated integrin signaling activation and perturbation of integrin signaling suppressed Tim-4-promoted efferocytosis. Taken together, the data suggest that Fn1 locates Tim-4 and integrins in close proximity by acting as a scaffold, resulting in synergistic cooperation of Tim-4 with integrins for efficient efferocytosis.


Assuntos
Apoptose/genética , Fibronectinas/genética , Proteínas de Membrana/genética , Animais , Anexina A5/genética , Citocinas/genética , Glucose-6-Fosfato Isomerase/genética , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fagócitos/metabolismo , Fagocitose/genética , Fosfatidilserinas/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...