Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124205, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569389

RESUMO

Heterogeneous reactions on mineral dust surfaces are increasingly considered important in the removal of gaseous pollutants and the formation of secondary aerosols. Although the heterogeneous reaction of NO2 on the hematite surface has been investigated in many previous studies, little is known about the reaction of NO2 with hematite under ambient conditions. In this work, heterogeneous reactions of NO2 with hematite at 298 K were investigated via a coated-wall flow tube reactor and in situ diffuse reflectance Fourier transformed infrared spectroscopy (DRIFTS). The influence of UV illumination, relative humidity (RH) and O2 on the uptake coefficients and adsorption amount of NO2, as well as the nitrate formation on the hematite surface, has been analyzed comprehensively. UV irradiation shows a significant effect on the true uptake coefficient (γBET), which increases from 2.00 × 10-6 to 4.76 × 10-6 in the N2 stream and 1.32 × 10-6 to 4.07 × 10-6 in the air stream under dry conditions (∼0.3 % RH). RH (in the range of 0-67 %) exhibits an inhibitory effect on the adsorption of NO2 on the hematite surface because of the competition between NO2 and water molecules, that is, γBET and adsorption amount of NO2 decrease with an increase in RH under both the dark and light reaction conditions. Meanwhile, both the γBET and adsorption amount of NO2 on hematite decrease in the air stream compared to those in N2 conditions. In addition, the results from the DRIFTS experiments indicate that the presence of UV irradiation promotes the conversion of NO2 to nitrate and both the RH and O2 suppress the nitrate formation. From this research, the heterogeneous reactions between NO2 with mineral dust under ambient conditions will be better understood.

2.
Zhongguo Zhong Yao Za Zhi ; 40(11): 2090-5, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26552162

RESUMO

According to the transcriptome dataset of Panax notoginseng, the key geranylgeranyl pyrophosphate synthase gene (GGPPS) in terpenoid backbone biosynthesis was selected to be cloned. Using specific primer pairs combining with RACE (rapid amplification of cDNA ends) technique, the full-length cDNA sequence with 1 203 bp, which containing a 1 035 bp open reading frame, was cloned and named as PnGGPPS. The corresponding full-length DNA sequence contained 2 370 bp, consisted of 1 intron and 2 exons. The deduced protein PnGGPPS contained 344 amino acids and shared more than 73% identity with GGPPS from Ricinus communis and Salvia miltiorrhiza. PnGGPPS also had specific Aspartic acid enrichment regions and other conserved domains, which belonged to the Isoprenoid-Biosyn-C1 superfamily. The quantitative real-time PCR showed that PnGGPPS expressed in different tissues of 1, 2, 3 years old root, stem, leaf and 3 years old flower, and the expression level in 3 years old leaf was significant higher than that in other organs, which suggested that it might not only be involved in the regulation of the growth and development, but also be associated with the biosynthesis of chlorophyll and carotenoids, the development of chloroplast, the shade habit and the quality formation of P. notoginseng.


Assuntos
Clonagem Molecular , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Panax notoginseng/genética , Biologia Computacional , Reação em Cadeia da Polimerase em Tempo Real
3.
Yao Xue Xue Bao ; 50(2): 227-32, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-25975034

RESUMO

With homology cloning approaches coupling with RACE (rapid-amplification of cDNA ends) techniques, the full-length coding sequence of pathogenesis-related protein PR10-1 with differential expression was cloned from the total RNA of the root of Panax notoginseng, and its function was explored furtherly. As a result, the longest 465 bp ORF (named as PnPR10-1 with the Accession No. KJ741402 in GenBank) was detected from the cloned sequence with full-length of cDNA of 863 bp. The corresponding peptide encoded consisted of 155 amino acids, contained some domains such as Bet-v-I, and showed high similarity with that from Panax ginseng by analysis of phylogenetic trees created from the alignments. Real-time quantitative PCR showed that the expression of PnPR10-1 gene was constitutive in different tissues of 1-3 year old plant, suggesting that it might be involved in growth, development, and secondary metabolism; yet it was up-regulated significantly with the infection of Fusarium oxysporum in root, suggesting that it might be involved in defense against many diseases including root rot in P. notoginseng.


Assuntos
Genes de Plantas , Glicosídeo Hidrolases/genética , Panax notoginseng/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Raízes de Plantas
4.
J Mater Chem B ; 1(26): 3295-3303, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261038

RESUMO

Direct immobilization of enzymes on the bioactive glasses is conceptually a completely new strategy. We find that the Fe2O3-CaO-SiO2-P2O5 magnetic mesoporous bioactive glass (MMBG) is an ideal immobilization matrix for glucose oxidase (GOD). Its unique chemical surface properties and open mesopores enhance the catalytic activity of directly immobilized GOD. In this paper, MMBG was synthesized using the sol-gel approach and polyethylene glycol (PEG) as template at 700 °C. GOD molecules were spontaneously entrapped inside the open mesoporous structure and onto the surface of MMBG via iron ion binding, their activity was not impaired. The substrates and products can access and diffuse freely through the open mesoporous structure in MMBG. This study is focused on understanding the formation mechanism of MMBG, the immobilized mechanism of GOD and the magnetic separation mechanism of MMBG from the reaction medium. The MMBG can be utilized in the design of a solid support for any enzyme for bioconversion, bioremediation, and biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA