Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(31): 51402-51415, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881656

RESUMO

Ovarian cancer (OC) is a heterogeneous disease characterized by defective DNA repair. Very few targets are universally expressed in the high grade serous (HGS) subtype. We previously identified that CHK1 was overexpressed in most of HGSOC. Here, we sought to understand the DNA damage response (DDR) to CHK1 inhibition and increase the anti-tumor activity of this pathway. We found BRD4 suppression either by siRNA or BRD4 inhibitor JQ1 enhanced the cytotoxicity of CHK1 inhibition. Interestingly, BRD4 was amplified and/or upregulated in a subset of HGSOC with statistical correlation to overall survival. BRD4 inhibition increased CBX5 (HP1α) level. CHK1 inhibitor induced DDR marker, γ-H2AX, but BRD4 suppression did not. Furthermore, nuclear localization of CBX5 and γ-H2AX was mutually exclusive in BRD4-and CHK1-inhibited cells, suggesting BRD4 facilitates DDR by repressing CBX5. Our results provide a strong rationale for clinical investigation of CHK1 and BRD4 co-inhibition, especially for HGSOC patients with BRD4 overexpression.

2.
Oncotarget ; 5(24): 12788-802, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25474241

RESUMO

Ovarian cancer (OC) is extremely heterogeneous, implying that therapeutic strategies should be specifically designed based on molecular characteristics of an individual's tumor. Previously, we showed that IKKε promotes invasion and metastasis in a subset of OCs. Here, we identified CHEK1 as an IKKε-dependent lethal gene from shRNA kinome library screen. In subsequent pharmacological intervention studies, the co-inhibition of IKKε and CHEK1 was more effective in killing OC cells than single treatment. At the molecular level, co-inhibition dramatically decreased pro-survival proteins, but increased proteins involved in DNA damage and apoptosis. IKKε-knockdown increased p21 levels, while overexpression of wild-type IKKε, but not a kinase dead IKKε mutant decreased p21 levels. We further demonstrated that the depletion of p21 rendered OC cells more resistant to cell death induced by co-inhibition of IKKε and CHEK1. In conclusion, we revealed a novel interplay between IKKε, CHEK1 and p21 signaling in survival of OC. Our study provides a rationale for the clinical development of specific IKKε inhibitor and for usage of IKKε as an exploratory marker for resistance to CHEK1 inhibitors in the clinic. The interplay provides one potential explanation as to why very few clinical responses were achieved in patients treated with single-agent CHEK1 inhibitors.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinase I-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Quinases/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Dano ao DNA , Feminino , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Proteínas Quinases/deficiência , Proteínas Quinases/genética , RNA Interferente Pequeno , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA