Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38817124

RESUMO

CONTEXT: Pancreatic neuroendocrine tumors (PNETs) exhibit a wide range of behavior from localized disease to aggressive metastasis. A comprehensive transcriptomic profile capable of differentiating between these phenotypes remains elusive. OBJECTIVE: Use machine learning to develop predictive models of PNET metastatic potential dependent upon transcriptomic signature. METHODS: RNA-sequencing data were analyzed from 95 surgically-resected primary PNETs in an international cohort. Two cohorts were generated with equally balanced metastatic PNET composition. Machine learning was used to create predictive models distinguishing between localized and metastatic tumors. Models were validated on an independent cohort of 29 formalin-fixed, paraffin-embedded samples using NanoString nCounter®, a clinically-available mRNA quantification platform. RESULTS: Gene expression analysis identified concordant differentially expressed genes between the two cohorts. Gene set enrichment analysis identified additional genes that contributed to enriched biologic pathways in metastatic PNETs. Expression values for these genes were combined with an additional 7 genes known to contribute to PNET oncogenesis and prognosis, including ARX and PDX1. Eight specific genes (AURKA, CDCA8, CPB2, MYT1L, NDC80, PAPPA2, SFMBT1, ZPLD1) were identified as sufficient to classify the metastatic status with high sensitivity (87.5% - 93.8%) and specificity (78.1% - 96.9%). These models remained predictive of the metastatic phenotype using NanoString nCounter® on the independent validation cohort, achieving a median AUROC of 0.886. CONCLUSIONS: We identified and validated an eight-gene panel predictive of the metastatic phenotype in PNETs, which can be detected using the clinically-available NanoString nCounter® system. This panel should be studied prospectively to determine its utility in guiding operative versus non-operative management.

2.
Front Immunol ; 15: 1355388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550578

RESUMO

Ionizing radiation has garnered considerable attention as a combination partner for immunotherapy due to its potential immunostimulatory effects. In contrast to the more commonly used external beam radiation, we explored the feasibility of combining chimeric antigen receptor (CAR) T cell therapy with targeted radionuclide therapy (TRT), which is achieved by delivering ß-emitting 177Lu-DOTATATE to tumor via tumor-infiltrating CAR T cells that express somatostatin receptor 2 (SSTR2). We hypothesized that the delivery of radiation to tumors could synergize with CAR T therapy, resulting in enhanced antitumor immunity and tumor response. To determine the optimal dosage and timing of 177Lu-DOTATATE treatment, we measured CAR T cell infiltration and expansion in tumors longitudinally through positron emission tomography (PET) using a SSTR2-specific positron-emitting radiotracer,18F-NOTA-Octreotide. In animals receiving CAR T cells and a low-dose (2.5 Gy) of TRT following the administration of 177Lu-DOTATATE, we observed a rapid regression of large subcutaneous tumors, which coincided with a dramatic increase in serum proinflammatory cytokines. Tumor burden was also reduced when a higher radiation dose (6 Gy) was delivered to the tumor. However, this higher dose led to cell death in both the tumor and CAR T cells. Our study suggests that there may exist an optimum range of TRT dosage that can enhance T cell activity and sensitize tumor cells to T cell killing, which may result in more durable tumor control compared to a higher radiation dose.


Assuntos
Neoplasias , Animais , Neoplasias/tratamento farmacológico , Octreotida/uso terapêutico , Linfócitos T , Imunoterapia , Radioisótopos/uso terapêutico
3.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067255

RESUMO

Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen that is frequently overexpressed in various carcinomas. We have developed chimeric antigen receptor (CAR) T cells specifically targeting EpCAM for the treatment of gastric cancer. This study sought to unravel the precise mechanisms by which tumors evade immune surveillance and develop resistance to CAR T cell therapy. Through a combination of whole-body CAR T cell imaging and single-cell multiomic analyses, we uncovered intricate interactions between tumors and tumor-infiltrating lymphocytes (TILs). In a gastric cancer model, tumor-infiltrating CD8 T cells exhibited both cytotoxic and exhausted phenotypes, while CD4 T cells were mainly regulatory T cells. A T cell receptor (TCR) clonal analysis provided evidence of CAR T cell proliferation and clonal expansion within resistant tumors, which was substantiated by whole-body CAR T cell imaging. Furthermore, single-cell transcriptomics showed that tumor cells in mice with refractory or relapsing outcomes were enriched for genes involved in major histocompatibility complex (MHC) and antigen presentation pathways, interferon-γ and interferon-α responses, mitochondrial activities, and a set of genes (e.g., CD74, IDO1, IFI27) linked to tumor progression and unfavorable disease prognoses. This research highlights an approach that combines imaging and multiomic methodologies to concurrently characterize the evolution of tumors and the differentiation of CAR T cells.

4.
Nat Commun ; 14(1): 2068, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045815

RESUMO

The limited number of targetable tumor-specific antigens and the immunosuppressive nature of the microenvironment within solid malignancies represent major barriers to the success of chimeric antigen receptor (CAR)-T cell therapies. Here, using epithelial cell adhesion molecule (EpCAM) as a model antigen, we used alanine scanning of the complementarity-determining region to fine-tune CAR affinity. This allowed us to identify CARs that could spare primary epithelial cells while still effectively targeting EpCAMhigh tumors. Although affinity-tuned CARs showed suboptimal antitumor activity in vivo, we found that inducible secretion of interleukin-12 (IL-12), under the control of the NFAT promoter, can restore CAR activity to levels close to that of the parental CAR. This strategy was further validated with another affinity-tuned CAR specific for intercellular adhesion molecule-1 (ICAM-1). Only in affinity-tuned CAR-T cells was NFAT activity stringently controlled and restricted to tumors expressing the antigen of interest at high levels. Our study demonstrates the feasibility of specifically gearing CAR-T cells towards recognition of solid tumors by combining inducible IL-12 expression and affinity-tuned CAR.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Interleucina-12/genética , Molécula de Adesão da Célula Epitelial , Imunoterapia Adotiva , Neoplasias/genética , Neoplasias/terapia , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Mol Cancer Res ; 21(5): 397-410, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790391

RESUMO

A subset of thyroid cancers, recurrent differentiated thyroid cancers and anaplastic thyroid cancer (ATC), are difficult to treat by thyroidectomy and systemic therapy. A common mutation in thyroid cancer, BRAFV600E, has targetable treatment options; however, the results have been disappointing in thyroid cancers compared with BRAFV600E melanoma, as thyroid cancers quickly become resistant to BRAFV600E inhibitor (BRAFi). Here, we studied the molecular pathway that is induced in BRAFV600E thyroid cancer cells and patient-derived tumor samples in response to BRAFi, vemurafenib, using RNA-sequencing and molecular analysis. Both inducible response to BRAFi and acquired BRAFi resistance in BRAFV600E thyroid cancer cells showed significant activation of the JAK/STAT pathway. Functional analyses revealed that the combination of BRAFi and inhibitors of JAK/STAT pathway controlled BRAFV600E thyroid cancer cell growth. The Cancer Genome Atlas data analysis demonstrated that potent activation of the JAK/STAT signaling was associated with shorter recurrence rate in patients with differentiated thyroid cancer. Analysis of tumor RNA expression in patients with poorly differentiated thyroid cancer and ATC also support that enhanced activity of JAK/STAT signaling pathway is correlated with worse prognosis. Our study demonstrates that JAK/STAT pathway is activated as BRAFV600E thyroid cancer cells develop resistance to BRAFi and that this pathway is a potential target for anticancer activity and to overcome drug resistance that commonly develops to treatment with BRAFi in thyroid cancer. IMPLICATIONS: Dual inhibition of BRAF and JAK/STAT signaling pathway is a potential therapeutic treatment for anticancer activity and to overcome drug resistance to BRAFi in thyroid cancer.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Janus Quinases/uso terapêutico , Sulfonamidas/farmacologia , Transdução de Sinais , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Mutação , RNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
6.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301668

RESUMO

Pancreatic neuroendocrine tumors (PNETs) are malignancies arising from the islets of Langerhans. Therapeutic options are limited for the over 50% of patients who present with metastatic disease. We aimed to identify mechanisms to remodel the PNET tumor microenvironment (TME) to ultimately enhance susceptibility to immunotherapy. The TMEs of localized and metastatic PNETs were investigated using an approach that combines RNA-Seq, cancer and T cell profiling, and pharmacologic perturbations. RNA-Seq analysis indicated that the primary tumors of metastatic PNETs showed significant activation of inflammatory and immune-related pathways. We determined that metastatic PNETs featured increased numbers of tumor-infiltrating T cells compared with localized tumors. T cells isolated from both localized and metastatic PNETs showed evidence of recruitment and antigen-dependent activation, suggestive of an immune-permissive microenvironment. A computational analysis suggested that vorinostat, a histone deacetylase inhibitor, may perturb the transcriptomic signature of metastatic PNETs. Treatment of PNET cell lines with vorinostat increased chemokine CCR5 expression by NF-κB activation. Vorinostat treatment of patient-derived metastatic PNET tissues augmented recruitment of autologous T cells, and this augmentation was substantiated in a mouse model of PNET. Pharmacologic induction of chemokine expression may represent a promising approach for enhancing the immunogenicity of metastatic PNET TMEs.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Camundongos , Linfócitos T , Quimiocinas , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral
7.
J Gastrointest Surg ; 26(11): 2321-2329, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35915373

RESUMO

INTRODUCTION: Sex-based differences in survival have emerged among patients with pancreatic neuroendocrine tumors (PNETs). Mechanisms driving these differences remain poorly understood. We aimed to further characterize sex-based clinicopathologic and survival differences among patients with PNETs and correlate divergent mutational signatures in these patients. METHODS: The National Cancer Database (NCDB) was queried for PNET patients diagnosed 2004-2017 who underwent surgery. Clinicopathologic features were analyzed by sex. The overall survival (OS) of men and women by disease stage was compared using the Kaplan-Meier method. Differences in PNET mutational signatures were analyzed by querying the American Association for Cancer Research Genomics Evidence Neoplasia Information (AACR-GENIE) Cohort v11.0-public. Frequencies of mutational signatures were compared by Fischer's exact (FE) test, adjusting for multiple testing via the Benjamini-Hochberg correction. RESULTS: About 15,202 patients met inclusion criteria from the NCDB; 51.9% were men and 48.1% were women. Men more frequently had tumors > 2 cm than women and more commonly had poorly or undifferentiated tumors. Despite this, lymph node positivity and distant metastases were similar. Differences in OS were only seen among those with early stage rather than stage 3 or 4 disease. MEN1 and DAXX mutations were more frequent among men with PNETs, whereas TP53 mutations were more frequent among women when assessed by FE test. However, neither of these mutational differences maintained statistical significance when adjusted for multiple testing. CONCLUSION: Compared to women, men have larger tumors but similar rates of distant metastases at time of surgery. OS differences appear to be driven by patients with early-stage disease without clearly identifiable differences in mutational signatures between the sexes.


Assuntos
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Masculino , Humanos , Feminino , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/cirurgia , Tumores Neuroendócrinos/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Estudos de Coortes , Mutação , Estudos Retrospectivos
8.
Cancer Immunol Res ; 9(10): 1158-1174, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341066

RESUMO

Adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated unparalleled responses in hematologic cancers, yet antigen escape and tumor relapse occur frequently. CAR T-cell therapy for patients with solid tumors faces even greater challenges due to the immunosuppressive tumor environment and antigen heterogeneity. Here, we developed a bispecific CAR to simultaneously target epithelial cell adhesion molecule (EpCAM) and intercellular adhesion molecule 1 (ICAM-1) to overcome antigen escape and to improve the durability of tumor responses. ICAM-1 is an adhesion molecule inducible by inflammatory cytokines and elevated in many types of tumors. Our study demonstrates superior efficacy of bispecific CAR T cells compared with CAR T cells targeting a single primary antigen. Bispecific CAR T achieved more durable antitumor responses in tumor models with either homogenous or heterogenous expression of EpCAM. We also showed that the activation of CAR T cells against EpCAM in tumors led to upregulation of ICAM-1, which rendered tumors more susceptible to ICAM-1 targeting by bispecific CAR T cells. Our strategy of additional targeting of ICAM-1 may have broad applications in augmenting the activity of CAR T cells against primary tumor antigens that are prone to antigen loss or downregulation.


Assuntos
Molécula de Adesão da Célula Epitelial/metabolismo , Imunoterapia Adotiva/métodos , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Animais , Deriva e Deslocamento Antigênicos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Molécula de Adesão da Célula Epitelial/genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Molécula 1 de Adesão Intercelular/genética , Masculino , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Thyroid ; 31(10): 1481-1493, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34078123

RESUMO

Background: Anaplastic thyroid cancer (ATC) is a rare cancer with poor prognosis and few treatment options. The objective of this study was to investigate new immune-associated therapeutic targets by identifying ATC-derived, human leukocyte antigen (HLA) class II-presenting peptides. One protein that generated multiple peptides in ATC was chondroitin sulfate-proteoglycan-4 (CSPG4), a transmembrane proteoglycan with increased expression in multiple aggressive cancers, but not yet investigated in ATC. Methods: We applied autologous peripheral blood T cells to ATC patient-derived xenografted mice to examine whether ATC induces a tumor-specific T cell response. We then identified peptide antigens eluted from the HLA-DQ complex in ATC patient-derived cells using mass spectrometry, detecting abundant CSPG4-derived peptides specific to the ATC sample. Next, we analyzed the surface expression level of CSPG4 in thyroid cancer cell lines and primary cell culture using flow cytometry. In addition, we used immunohistochemistry to compare the expression level and localization of the CSPG4 protein in ATC, papillary thyroid cancer, and normal thyroid tissue. We then investigated the correlation between CSPG4 expression and clinicopathological features of patients with thyroid cancer. Results: We found that ATC tissue had a high level of HLA-DQ expression and that the patient's CD4+ T cells showed activation when exposed to ATC. By eluting the HLA-DQ complex of ATC tissue, we found that CSPG4 generated one of the most abundant and specific peptides. CSPG4 expression at the cell surface of thyroid cancer was also significantly high when determined by flow cytometry, with the majority of ATC cell lines exhibiting ∼10-fold higher mean fluorescence intensity. Furthermore, most ATC patient cases expressed CSPG4 in the cytoplasm or membrane of the tumor cells. CSPG4 expression was correlated with tumor size, extrathyroidal extension, and intercellular adhesion molecule-1 (ICAM-1) circumferential expression. CSPG4 mRNA overexpression was associated with worse overall survival in patients with ATC and poorly differentiated thyroid cancer. Conclusions: CSPG4 expression is significantly elevated in aggressive thyroid cancers, with a strong correlation with a poor prognosis. The vast number of HLA-DQ eluted CSPG4 peptides was identified in ATC, demonstrating the potential of CSPG4 as a novel immunotherapeutic target for ATC.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regulação Neoplásica da Expressão Gênica , Expressão Gênica , Imunoterapia/métodos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/terapia , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Prognóstico , Carcinoma Anaplásico da Tireoide/imunologia , Neoplasias da Glândula Tireoide/imunologia
10.
Mol Ther Oncolytics ; 18: 587-601, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32995483

RESUMO

Cancer therapy utilizing adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated remarkable clinical outcomes in hematologic malignancies. However, CAR T cell application to solid tumors has had limited success, partly due to the lack of tumor-specific antigens and an immune-suppressive tumor microenvironment. From the tumor tissues of gastric cancer patients, we found that intercellular adhesion molecule 1 (ICAM-1) expression is significantly associated with advanced stage and shorter survival. In this study, we report a proof-of-concept study using ICAM-1-targeting CAR T cells against gastric cancer. The efficacy of ICAM-1 CAR T cells showed a significant correlation with the level of ICAM-1 expression in target cells in vitro. In animal models of human gastric cancer, ICAM-1-targeting CAR T cells potently eliminated tumors that developed in the lungs, while their efficacy was more limited against the tumors in the peritoneum. To augment CAR T cell activity against intraperitoneal tumors, combinations with paclitaxel or CAR activation-dependent interleukin (IL)-12 release were explored and found to significantly increase anti-tumor activity and survival benefit. Collectively, ICAM-1-targeting CAR T cells alone or in combination with chemotherapy represent a promising strategy to treat patients with ICAM-1+ advanced gastric cancer.

11.
Clin Cancer Res ; 26(22): 6003-6016, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32887724

RESUMO

PURPOSE: Advanced thyroid cancers, including poorly differentiated and anaplastic thyroid cancer (ATC), are lethal malignancies with limited treatment options. The majority of patients with ATC have responded poorly to programmed death 1 (PD1) blockade in early clinical trials. There is a need to explore new treatment options. EXPERIMENTAL DESIGN: We examined the expression of PD-L1 (a ligand of PD1) and intercellular adhesion molecule 1 (ICAM1) in thyroid tumors and ATC cell lines, and investigated the PD1 expression level in peripheral T cells of patients with thyroid cancer. Next, we studied the tumor-targeting efficacy and T-cell dynamics of monotherapy and combination treatments of ICAM1-targeting chimeric antigen receptor (CAR) T cells and anti-PD1 antibody in a xenograft model of ATC. RESULTS: Advanced thyroid cancers were associated with increased expression of both ICAM1 and PD-L1 in tumors, and elevated PD1 expression in CD8+ T cells of circulating blood. The expression of ICAM1 and PD-L1 in ATC lines was regulated by the IFNγ-JAK2 signaling pathway. ICAM1-targeted CAR T cells, produced from either healthy donor or patient T cells, in combination with PD1 blockade demonstrated an improved ability to eradicate ICAM1-expressing target tumor cells compared with CAR T treatment alone. PD1 blockade facilitated clearance of PD-L1 high tumor colonies and curtailed excessive CAR T expansion, resulting in rapid tumor clearance and prolonged survival in a mouse model. CONCLUSIONS: Targeting two IFNγ-inducible, tumor-associated antigens-ICAM1 and PD-L1-in a complementary manner might be an effective treatment strategy to control advanced thyroid cancers in vivo.


Assuntos
Antígeno B7-H1/genética , Molécula 1 de Adesão Intercelular/genética , Receptor de Morte Celular Programada 1/genética , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interferon gama/genética , Janus Quinase 2/genética , Camundongos , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/imunologia , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/patologia
13.
Surgery ; 167(1): 56-63, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585718

RESUMO

BACKGROUND: The majority of papillary thyroid cancers are driven by acquired mutations typically in the BRAF or RAS genes that aberrantly activate the mitogen-activated protein kinase pathway. This process leads to malignant transformation, dedifferentiation, and a decrease in the expression of the sodium-iodide symporter (NIS; SLC5A5), which results in resistance to radioactive iodine therapy. We sought to determine whether inhibition of aberrant mitogen-activated protein kinase-signaling can restore NIS expression. METHODS: We prospectively developed cultures of papillary thyroid cancers derived from operative specimens and applied drug treatments for 24 hours. Samples were genotyped to identify BRAF and RAS mutations. We performed quantitative PCR to measure NIS expression after treatment. RESULTS: We evaluated 24 patient papillary thyroid cancer specimens; BRAFV600E mutations were identified in 18 out of 24 (75.0%); 1 patient tumor had an HRAS mutation, and the remaining 5 were BRAF and RAS wildtype. Dual treatment with dabrafenib and trametinib increased NIS expression (mean fold change 4.01 ± 2.04, P < .001), and single treatment with dabrafenib had no effect (mean fold change 0.98 ± 0.42, P = .84). Tumor samples that had above-median NIS expression increases came from younger patients (39 vs 63 years, P < .05). CONCLUSION: Dual treatment with BRAF and MEK inhibitors upregulated NIS expression, suggesting that this treatment regimen may increase tumor iodine uptake. The effect was greatest in tumor cells from younger patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Radioisótopos do Iodo/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Simportadores/metabolismo , Câncer Papilífero da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia , Adulto , Fatores Etários , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimiorradioterapia/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Radioisótopos do Iodo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação , Oximas/farmacologia , Oximas/uso terapêutico , Cultura Primária de Células , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridonas , Pirimidinonas , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos
14.
Sci Rep ; 9(1): 10634, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337787

RESUMO

While the majority of thyroid cancer patients are easily treatable, those with anaplastic or poorly differentiated recurrent thyroid carcinomas have a very poor prognosis with a median survival of less than a year. Previously, we have shown a significant correlation between ICAM-1 overexpression and malignancy in thyroid cancer, and have pioneered the use of ICAM-1 targeted CAR T cells as a novel treatment modality. For clinical translation of this novel modality, we designed CAR T cells possessing micromolar rather than nanomolar affinity to ICAM-1 to avoid cytotoxicity in normal cells with basal levels of ICAM-1 expression. Herein, we report the automated process of CAR T cell manufacturing with CliniMACS Prodigy (Miltenyi Biotec) using cryopreserved peripheral blood leukocytes from apheresis collections. Using Prodigy, thawed leukopak cells were enriched for CD4+ and CD8+ T cells, subjected to double transduction using lentiviral vector, and expanded in culture for a total of 10 days with a final yield of 2-4 × 109 cells. The resulting CAR T cells were formulated for cryopreservation to be used directly for infusion into patients after thawing with no further processing. We examined cross-reactivity of CAR T cells toward both human and murine ICAM-1 and ICAM-1 expression in human and mouse tissues to demonstrate that both efficacy and on-target, off-tumor toxicity can be studied in our preclinical model. Selective anti-tumor activity in the absence of toxicity provides proof-of-concept that micromolar affinity tuned CAR T cells can be used to target tumors expressing high levels of antigen while avoiding normal tissues expressing basal levels of the same antigen. These studies support the initiation of a phase I study to evaluate the safety and potential efficacy of micromolar affinity tuned CAR T cells against newly diagnosed anaplastic and refractory or recurrent thyroid cancers.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Molécula 1 de Adesão Intercelular/imunologia , Receptores de Antígenos Quiméricos/imunologia , Neoplasias da Glândula Tireoide/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Sobrevivência Celular/imunologia , Reações Cruzadas , Células HEK293 , Células HeLa , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transdução Genética
15.
Endocr Relat Cancer ; 26(4): 411-423, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689542

RESUMO

Loss of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) expression by CpG promoter hypermethylation is associated with metastasis in gastroenteropancreatic neuroendocrine tumors; however, the mechanism of how UCHL1 loss contributes to metastatic potential remains unclear. In this study, we first confirmed that loss of UCHL1 expression on immunohistochemistry was significantly associated with metastatic tumors in a translational pancreatic neuroendocrine tumor (PNET) cohort, with a sensitivity and specificity of 78% and 89%, respectively. To study the mechanism driving this aggressive phenotype, BON and QGP-1 metastatic PNET cell lines, which do not produce UCHL1, were stably transfected to re-express UCHL1. In vitro assays, RNA-sequencing, and reverse-phase protein array (RPPA) analyses were performed comparing empty-vector negative controls and UCHL1-expressing cell lines. UCHL1 re-expression is associated with lower anchorage-independent colony growth in BON cells, lower colony formation in QGP cells, and a higher percentage of cells in the G0/G1 cell-cycle phase in BON and QGP cells. On RPPA proteomic analysis, there was an upregulation of cell-cycle regulatory proteins CHK2 (1.2 fold change, p=0.004) and P21 (1.2 fold change, p=0.023) in BON cells expressing UCHL1; western blot confirmed upregulation of phosphorylated CHK2 and P21. There were no transcriptomic differences detected on RNA-Sequencing between empty-vector negative controls and UCHL1-expressing cell lines. In conclusion, UCHL1 loss correlates with metastatic potential in PNETs and its re-expression induces a less aggressive phenotype in vitro, in part by inducing cell-cycle arrest through post-translational regulation of phosphorylated CHK2. UCHL1 re-expression should be considered as a functional biomarker in detecting PNETs capable of metastasis.


Assuntos
Biomarcadores Tumorais/metabolismo , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ubiquitina Tiolesterase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Fenótipo , Ubiquitina Tiolesterase/genética
16.
Surgery ; 165(1): 196-201, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30413322

RESUMO

BACKGROUND: Inhibition of the interaction of programmed death 1 with programmed death ligand 1 and 2 has been used successfully for treatment of multiple advanced cancers, but expression has not been studied in adrenocortical carcinoma. In this study, we investigated programmed death ligand 1 and 2 expression in adrenocortical carcinoma to determine the potential usefulness of checkpoint inhibitors in these malignant neoplasms. METHODS: A total of 56 tissue samples from patients with adrenocortical carcinoma (34) and benign adrenal tissues (22) were identified. Immunohistochemistry was performed for programmed death ligand 1, programmed death ligand 2, and CD8 and scored for membranous staining on adrenal and stromal tissue according to the immunoreactive score and absolute percentage, respectively. Descriptive statistics, a Mann-Whitney U test, and Fisher exact tests were calculated. RESULTS: In total, 15 adrenocortical carcinoma (44%) stained positive for programmed death ligand 2 and 1 adrenocortical carcinoma for programmed death ligand 1 (P = .03). Adrenocortical carcinoma samples were more likely to express programmed death ligand 2 on tumor cells or in stromal tissues than benign samples (OR = 2.3, P = .03). There was no relationship between programmed death ligand 2 and CD8 expression (P = .08). There were also no relationships between programmed death ligand 2 or CD8 expression and tumor characteristics. CONCLUSION: Programmed death ligand 2, but not programmed death ligand 1, is expressed commonly in adrenocortical carcinoma samples. The utility of certain checkpoint inhibitors should, therefore, be evaluated in further studies.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Glândulas Suprarrenais/metabolismo , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
17.
J Surg Oncol ; 118(6): 1042-1049, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30311656

RESUMO

BACKGROUND AND OBJECTIVES: Hürthle cell carcinoma (HCC) is an unusual and relatively rare type of differentiated thyroid cancer. Currently, cytologic analysis of fine-needle aspiration biopsy is limited in distinguishing benign Hürthle cell neoplasms from malignant ones. The aim of this study was to determine whether differences in the expression of specific genes could differentiate HCC from benign Hürthle cell nodules by evaluating differential gene expression in Hürthle cell disease. METHODS: Eighteen benign Hürthle cell nodules and seven HCC samples were analyzed by whole-transcriptome sequencing. Bioinformatics analysis was carried out to identify candidate differentially expressed genes. Expression of these candidate genes was re-examined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was quantified by immunohistochemistry. RESULTS: Close homolog of L1 (CHL1) was identified as overexpressed in HCC. CHL1 was found to have greater than 15-fold higher expression in fragments per kilobase million in HCC compared with benign Hurthle cell tumors. This was confirmed by qRT-PCR. Moreover, the immunoreactivity score of the CHL1 protein was significantly higher in HCC compared with benign Hürthle cell nodules. CONCLUSIONS: CHL1 expression may represent a novel and useful prognostic biomarker to distinguish HCC from benign Hürthle cell disease.


Assuntos
Adenoma Oxífilo/metabolismo , Moléculas de Adesão Celular/biossíntese , Neoplasias da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/metabolismo , Adenoma Oxífilo/diagnóstico , Adenoma Oxífilo/patologia , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/patologia
18.
Ann Surg Oncol ; 25(3): 792-800, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29214451

RESUMO

BACKGROUND: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis and few therapeutic options. Stathmin1 (STMN1) is a cytosolic protein involved in microtubule dynamics through inhibition of tubulin polymerization and promotion of microtubule depolymerization, which has been implicated in carcinogenesis and aggressive behavior in multiple epithelial malignancies. We aimed to evaluate expression of STMN1 in ACC and to elucidate how this may contribute to its malignant phenotype. METHODS: STMN1 was identified by RNA sequencing as a highly differentially expressed gene in human ACC samples compared with benign adrenal tumors. Expression was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical (IHC) staining of a tissue microarray (TMA) from two independent cohorts. The biologic relevance of STMN1 was investigated in NCI-H295R cells by lentivirus-mediated silencing. RESULTS: Differential gene expression demonstrated an eightfold increase in STMN1 messenger RNA (mRNA) in malignant compared with benign adrenal tissue. IHC showed significantly higher expression of STMN1 protein in ACC compared with normal and benign tissues. STMN1 knockdown in an ACC cell line resulted in decreased cell viability, cell-cycle arrest at G0/G1, and increased apoptosis in serum-starved conditions compared with scramble short hairpin RNA (shRNA) controls. STMN1 knockdown also decreased migration, invasion, and anchorage-independent growth compared with controls. CONCLUSIONS: STMN1 is overexpressed in human ACC samples, and knockdown of this target in vitro resulted in a less aggressive phenotype of ACC, particularly under serum-starved conditions. Further study is needed to investigate the feasibility of interfering with STMN1 as a potential therapeutic target.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/patologia , Biomarcadores Tumorais/metabolismo , Estatmina/metabolismo , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/cirurgia , Adrenalectomia , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/cirurgia , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Prognóstico , Estatmina/genética , Células Tumorais Cultivadas
19.
Sci Rep ; 7(1): 14366, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085043

RESUMO

Adoptive transfer of high-affinity chimeric antigen receptor (CAR) T cells targeting hematological cancers has yielded impressive clinical results. However, safety concerns regarding target expression on healthy tissue and poor efficacy have hampered application to solid tumors. Here, a panel of affinity-variant CARs were constructed targeting overexpressed ICAM-1, a broad tumor biomarker, using its physiological ligand, LFA-1. Anti-tumor T cell potency in vitro was directly proportional to CAR affinity and ICAM-1 density. In a solid tumor mouse model allowing simultaneous monitoring of anti-tumor potency and systemic off-tumor toxicity, micromolar affinity CAR T cells demonstrated superior anti-tumor efficacy and safety compared to their nanomolar counterparts. Longitudinal T cell tracking by PET/CT and concurrent cytokine measurement revealed superior expansion and contraction kinetics of micromolar affinity CAR T cells. Therefore, we developed an ICAM-1 specific CAR with broad anti-tumor applicability that utilized a reduced affinity targeting strategy to significantly boost efficacy and safety.


Assuntos
Imunoterapia Adotiva/métodos , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/imunologia , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Hematológicas/metabolismo , Humanos , Lentivirus/metabolismo , Ligantes , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Cancer Res ; 23(24): 7569-7583, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29025766

RESUMO

Purpose: Poorly differentiated thyroid cancer and anaplastic thyroid cancer (ATC) are rare yet lethal malignancies with limited treatment options. Many malignant tumors, including papillary thyroid cancer (PTC) and ATC, are associated with increased expression of ICAM-1, providing a rationale for utilizing ICAM-1-targeting agents for the treatment of aggressive cancer. We developed a third-generation chimeric antigen receptor (CAR) targeting ICAM-1 to leverage adoptive T-cell therapy as a new treatment modality.Experimental Design: ICAM-1 CAR T cells were applied to multiple malignant and nonmalignant target cells to investigate specific target cell death and "off-tumor" toxicity in vitroIn vivo therapeutic efficacy of ICAM-1 CAR T cells was examined in ATC mouse models established from a cell line and patient-derived tumors that rapidly develop systemic metastases.Results: ICAM-1 CAR T cells demonstrated robust and specific killing of PTC and ATC cell lines in vitro Interestingly, although certain ATC cell lines showed heterogeneous levels of ICAM-1 expression, addition of cytotoxic CAR T cells induced increased ICAM-1 expression such that all cell lines became targetable. In mice with systemic ATC, a single administration of ICAM-1 CAR T cells mediated profound tumor killing that resulted in long-term remission and significantly improved survival. Patient-derived ATC cells overexpressed ICAM-1 and were largely eliminated by autologous ICAM-1 CAR T cells in vitro and in animal models.Conclusions: Our findings are the first demonstration of CAR T therapy against both a metastatic, thyroid cancer cell line and advanced ATC patient-derived tumors that exhibit dramatic therapeutic efficacy and survival benefit in animal studies. Clin Cancer Res; 23(24); 7569-83. ©2017 AACR.


Assuntos
Carcinoma Papilar/terapia , Molécula 1 de Adesão Intercelular/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia , Animais , Carcinoma Papilar/imunologia , Carcinoma Papilar/patologia , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Camundongos , Metástase Neoplásica , Receptores de Antígenos de Linfócitos T/administração & dosagem , Linfócitos T/imunologia , Câncer Papilífero da Tireoide , Carcinoma Anaplásico da Tireoide/imunologia , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...