Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Small ; 19(22): e2207966, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36861366

RESUMO

Herein, a novel combination of Mg- and Ga-co-doped ZnO (MGZO)/Li-doped graphene oxide (LGO) transparent electrode (TE)/electron-transporting layer (ETL) has been applied for the first time in Cu2 ZnSn(S,Se)4 (CZTSSe) thin-film solar cells (TFSCs). MGZO has a wide optical spectrum with high transmittance compared to that with conventional Al-doped ZnO (AZO), enabling additional photon harvesting, and has a low electrical resistance that increases electron collection rate. These excellent optoelectronic properties significantly improved the short-circuit current density and fill factor of the TFSCs. Additionally, the solution-processable alternative LGO ETL prevented plasma-induced damage to chemical bath deposited cadmium sulfide (CdS) buffer, thereby enabling the maintenance of high-quality junctions using a thin CdS buffer layer (≈30 nm). Interfacial engineering with LGO improved the Voc of the CZTSSe TFSCs from 466 to 502 mV. Furthermore, the tunable work function obtained through Li doping generated a more favorable band offset in CdS/LGO/MGZO interfaces, thereby, improving the electron collection. The MGZO/LGO TE/ETL combination achieved a power conversion efficiency of 10.67%, which is considerably higher than that of conventional AZO/intrinsic ZnO (8.33%).

2.
Adv Sci (Weinh) ; 10(6): e2205612, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529948

RESUMO

Photo(electro)catalysis methods have drawn significant attention for efficient, energy-saving, and environmental-friendly organic contaminant degradation in wastewater. However, conventional oxide-based powder photocatalysts are limited to UV-light absorption and are unfavorable in the subsequent postseparation process. In this paper, a large-area crystalline-semiconductor nitride membrane with a distinct nanoporous surface is fabricated, which can be scaled up to a full wafer and easily retrieved after photodegradation. The unique nanoporous surface enhances broadband light absorption, provides abundant reactive sites, and promotes the dye-molecule reaction with adsorbed hydroxyl radicals on the surface. The superior electric contact between the nickel bottom layer and nitride membrane facilitates swift charge carrier transportation. In laboratory tests, the nanostructure membrane can degrade 93% of the dye in 6 h under illumination with a small applied bias (0.5 V vs Ag/AgCl). Furthermore, a 2 inch diameter wafer-scale membrane is deployed in a rooftop test under natural sunlight. The membrane operates stably for seven cycles (over 50 h) with an outstanding dye degradation efficiency (>92%) and satisfied average total organic carbon removal rate (≈50%) in each cycle. This demonstration thus opens the pathway toward the production of nanostructured semiconductor layers for large-scale and practical wastewater treatment using natural sunlight.

3.
ACS Appl Mater Interfaces ; 14(15): 17889-17898, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404567

RESUMO

Copper thiocyanate (CuSCN) is a p-type semiconductor that exhibits hole-transport and wide-band gap (∼3.9 eV) characteristics. However, the conductivity of CuSCN is not sufficiently high, which limits its potential application in optoelectronic devices. Herein, CuSCN thin films were exposed to chlorine using a dry etching system to enhance their electrical properties, yielding a maximum hole concentration of 3 × 1018 cm-3. The p-type CuSCN layer was then deposited onto an n-type gallium nitride (GaN) layer to form a prototypical ultraviolet-based photodetector. X-ray photoelectron spectroscopy further demonstrated the interface electronic structures of the heterojunction, confirming a favorable alignment for holes and electrons transport. The ensuing p-CuSCN/n-GaN heterojunction photodetector exhibited a turn-on voltage of 2.3 V, a responsivity of 1.35 A/W at -1 V, and an external quantum efficiency of 5.14 × 102% under illumination with ultraviolet light (peak wavelength of 330 nm). The work opens a new pathway for making a plethora of hybrid optoelectronic devices of inorganic and organic nature by using p-type CuSCN as the hole injection layer.

4.
Adv Mater ; 33(17): e2005166, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33759267

RESUMO

Semiconductor heterostructures of multiple quantum wells (MQWs) have major applications in optoelectronics. However, for halide perovskites-the leading class of emerging semiconductors-building a variety of bandgap alignments (i.e., band-types) in MQWs is not yet realized owing to the limitations of the current set of used barrier materials. Here, artificial perovskite-based MQWs using 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), tris-(8-hydroxyquinoline)aluminum, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline as quantum barrier materials are introduced. The structures of three different five-stacked perovskite-based MQWs each exhibiting a different band offset with CsPbBr3 in the conduction and valence bands, resulting in a variety of MQW band alignments, i.e., type-I or type-II structures, are shown. Transient absorption spectroscopy reveals the disparity in charge carrier dynamics between type-I and type-II MQWs. Photodiodes of each type of perovskite artificial MQWs show entirely different carrier behaviors and photoresponse characteristics. Compared with bulk perovskite devices, type-II MQW photodiodes demonstrate a more than tenfold increase in the rectification ratio. The findings open new opportunities for producing halide-perovskite-based quantum devices by bandgap engineering using simple quantum barrier considerations.

5.
ACS Appl Mater Interfaces ; 13(11): 13410-13418, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33709688

RESUMO

Epitaxial growth using graphene (GR), weakly bonded by van der Waals force, is a subject of interest for fabricating technologically important semiconductor membranes. Such membranes can potentially offer effective cooling and dimensional scale-down for high voltage power devices and deep ultraviolet optoelectronics at a fraction of the bulk-device cost. Here, we report on a large-area ß-Ga2O3 nanomembrane spontaneous-exfoliation (1 cm × 1 cm) from layers of compressive-strained epitaxial graphene (EG) grown on SiC, and demonstrated high-responsivity flexible solar-blind photodetectors. The EG was favorably influenced by lattice arrangement of SiC, and thus enabled ß-Ga2O3 direct-epitaxy on the EG. The ß-Ga2O3 layer was spontaneously exfoliated at the interface of GR owing to its low interfacial toughness by controlling the energy release rate through electroplated Ni layers. The use of GR templates contributes to the seamless exfoliation of the nanomembranes, and the technique is relevant to eventual nanomembrane-based integrated device technology.

6.
ACS Appl Mater Interfaces ; 12(48): 53932-53941, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33203211

RESUMO

Recent advancements in gallium oxide (Ga2O3)-based heterostructures have allowed optoelectronic devices to be used extensively in the fields of power electronics and deep-ultraviolet photodetection. While most previous research has involved realizing single-crystalline Ga2O3 layers on native substrates for high conductivity and visible-light transparency, presented and investigated herein is a single-crystalline ß-Ga2O3 layer grown on an α-Al2O3 substrate through an interfacial γ-In2O3 layer. The single-crystalline transparent conductive oxide layer made of wafer-scalable γ-In2O3 provides high carrier transport, visible-light transparency, and antioxidation properties that are critical for realizing vertically oriented heterostructures for transparent oxide photonic platforms. Physical characterization based on X-ray diffraction and high-resolution transmission electron microscopy imaging confirms the single-crystalline nature of the grown films and the crystallographic orientation relationships among the monoclinic ß-Ga2O3, cubic γ-In2O3, and trigonal α-Al2O3, while the elemental composition and sharp interfaces across the heterostructure are confirmed by Rutherford backscattering spectrometry. Furthermore, the energy-band offsets are determined by X-ray photoelectron spectroscopy at the ß-Ga2O3/γ-In2O3 interface, elucidating a type-II heterojunction with conduction- and valence-band offsets of 0.16 and 1.38 eV, respectively. Based on the single-crystalline ß-Ga2O3/γ-In2O3/α-Al2O3 all-oxide heterostructure, a vertically oriented DUV photodetector is fabricated that exhibits a high photoresponsivity of 94.3 A/W, an external quantum efficiency of 4.6 × 104%, and a specific detectivity of 3.09 × 1012 Jones at 250 nm. The present demonstration lays a strong foundation for and paves the way to future all-oxide-based transparent photonic platforms.

7.
Adv Sci (Weinh) ; 7(21): 1903085, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173721

RESUMO

It is well-known that the alkali doping of polycrystalline Cu2ZnSn(S,Se)4 (CZTSSe) and Cu(In,Ga)(Se,S)2 has a beneficial influence on the device performance and there are various hypotheses about the principles of performance improvement. This work clearly explains the effect of Na doping on the fill factor (FF) rather than on all of the solar cell parameters (open-circuit voltage, FF, and sometimes short circuit current) for overall performance improvement. When doping is optimized, the fabricated device shows sufficient built-in potential and selects a better carrier transport path by the high potential difference between the intragrains and the grain boundaries. On the other hand, when doping is excessive, the device shows low contact potential difference and FF and selects a worse carrier transport path even though the built-in potential becomes stronger. The fabricated CZTSSe solar cell on a flexible metal foil optimized with a 25 nm thick NaF doping layer achieves an FF of 62.63%, thereby clearly showing the enhancing effect of Na doping.

8.
J Phys Chem Lett ; 11(7): 2559-2569, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32141757

RESUMO

Deep ultraviolet light-emitting diodes (DUV LEDs) (<280 nm) have been important light sources for broad applications in, e.g., sterilization, purification, and high-density storage. However, the lack of excellent transparent electrodes in the DUV region remains a challenging issue. Here, we demonstrate an architectural engineering scheme to flexibly tune the work function of Cu@shell nanowires (NWs) as top transparent electrodes in DUV LEDs. By fast encapsulation of shell metals on Cu NWs and a shift of electron binding energy, the electronic work function could be widely tailored down to 4.37 eV and up to 5.73 eV. It is revealed that the high work function of Cu@Ni and Cu@Pt NWs could overcome the interfacial barrier to p-AlGaN and achieve direct ohmic contact with high transparency (91%) in 200-400 nm. Completely transparent DUV LED chips are fabricated and successfully lighted with sharp top emission (wall-plug efficiency reaches 3%) under a turn-on voltage of 6.4 V. This architectural strategy is of importance in providing highly transparent ohmic electrodes for optoelectronic devices in broad wavelength regions.

9.
ACS Appl Mater Interfaces ; 12(7): 8189-8197, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31994389

RESUMO

Cu2ZnSn(S,Se)4 (CZTSSe) thin-film solar cells are showing great promise due to using earth-abundant and nontoxic materials and tuning the band gap through the amount of S and Se. Flexible high-efficiency CZTSSe solar cells are one of the outstanding research challenges because they currently require the use of thick glass substrates due to the high-temperature heat treatment process, and for this reason, few flexible CZTSSe solar cells have been reported. Furthermore, most researchers have used thin glass and metal substrates with little flexibility; the power conversion efficiency (PCE or η) values of the solar cells made with them have been slightly lower. To overcome these hurdles, we transferred high-efficiency CZTSSe solar cells formed on a soda-lime glass substrate to flexible substrates via an adhesive-bonding transfer method. Through this method, we were able to achieve the PCE of 5.8-7.1% on completely flexible substrates such as cloth, paper, and poly(ethylene terephthalate) (PET). In particular, we were able to produce a CZTSSe solar cell on a PET substrate with a PCE of 7.1%, which is the highest among fully flexible CZTSSe solar cells currently known to us. In addition, we deeply analyzed the PCE degradation of the flexible CZTSSe solar cell fabricated by the transfer method through a panoramic focused ion-beam image and nanoindentation. From the results of our work, we provide an insight into the possibility of making flexible high-efficiency CZTSSe solar cells using our transfer method.

10.
Sci Rep ; 7(1): 10333, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871141

RESUMO

In general, to realize full color, inorganic light-emitting diodes (LEDs) are diced from respective red-green-blue (RGB) wafers consisting of inorganic crystalline semiconductors. Although this conventional method can realize full color, it is limited when applied to microdisplays requiring high resolution. Designing a structure emitting various colors by integrating both AlGaInP-based and InGaN-based LEDs onto one substrate could be a solution to achieve full color with high resolution. Herein, we introduce adhesive bonding and a chemical wet etching process to monolithically integrate two materials with different bandgap energies for green and red light emission. We successfully transferred AlGaInP-based red LED film onto InGaN-based green LEDs without any cracks or void areas and then separated the green and red subpixel LEDs in a lateral direction; the dual color LEDs integrated by the bonding technique were tunable from the green to red color regions (530-630 nm) as intended. In addition, we studied vertically stacked subpixel LEDs by deeply analyzing their light absorption and the interaction between the top and bottom pixels to achieve ultra-high resolution.

11.
Sci Rep ; 7(1): 10225, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860549

RESUMO

We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.

12.
Nanotechnology ; 28(4): 045201, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27977418

RESUMO

In this paper, we introduce very thin Indium tin oxide (ITO) layers (5, 10, and 15 nm) hybridized with a metal mesh to produce high-performance transparent conductive layers (TCLs) in near-ultraviolet light-emitting diodes (NUV LEDs). Using UV-vis-IR spectrometry, Hall measurement, and atomic force microscopy, we found that 10 nm was the optimal thickness for the very thin ITO layers in terms of outstanding transmittance and sheet resistance values as well as stable contact properties when hybridized with the metal mesh. The proposed layers showed a value of 4.56 Ω/□ for sheet resistance and a value of 89.1% for transmittance. Moreover, the NUV LEDs fabricated with the hybrid TCLs achieved ∼140% enhanced light output power compared to that of 150 nm thick ITO layers. Finally, to verify the practical usage of the TCLs for industrial applications, we packaged the NUV LED chips and obtained improved turn-on voltage (3.48 V) and light output power (∼116%) performance.

13.
Opt Express ; 25(3): 2489-2495, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519094

RESUMO

We report a color tunable display consisting of two passive-matrix micro-LED array chips. The device has combined vertically stacked blue and green passive-matrix LED array chips sandwiched by a transparent bonding material. We demonstrate that vertically stacked blue and green micro-pixels are independently controllable with operation of four color modes. Moreover, the color of each pixel is tunable in the entire wavelength from the blue to green region (450 nm - 540 nm) by applying pulse-width-modulation bias voltage. This study is meaningful in that a dual color micro-LED array with a vertically stacked subpixel structure is realized.

14.
Nanotechnology ; 27(46): 465202, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27749268

RESUMO

We introduce ITO on graphene as a current-spreading layer for separated InGaN/GaN nanorod LEDs for the purpose of passivation-free and high light-extraction efficiency. Transferred graphene on InGaN/GaN nanorods effectively blocks the diffusion of ITO atoms to nanorods, facilitating the production of transparent ITO/graphene contact on parallel-nanorod LEDs, without filling the air gaps, like a bridge structure. The ITO/graphene layer sufficiently spreads current in a lateral direction, resulting in uniform and reliable light emission observed from the whole area of the top surface. Using KOH treatment, we reduce series resistance and reverse leakage current in nanorod LEDs by recovering the plasma-damaged region. We also control the size of the nanorods by varying the KOH treatment time and observe strain relaxation via blueshift in electroluminescence. As a result, bridge-structured LEDs with 8 min of KOH treatment show 15 times higher light-emitting efficiency than with 2 min of KOH treatment.

15.
Opt Express ; 22 Suppl 4: A1040-50, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978067

RESUMO

Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

16.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-127057

RESUMO

Diagnostic amniocentesis is one of the most useful technique for the prenatal detection of genetic disorders. Traditionally standard amniocentesis has been most commonly performed during the 2nd trimester from 16 to 20 weeks` gestation. Our laboratory has received 1,284 midtrimester amniotic fluid specimens during the past 5 year period for cytogenetic analysis and 1,274 were successfully cultured and yielded results. This study was based on data from 1,274 genetic amniocentesis performed at CHA General Hospital from Jan. 1991 to Dec. 1995. Chromosomal abnormalities were found in 61(4.8%) of the cases. There were 23 cases of aneuploidy, 37 cases of chromosomal rearrangemen t and 1 case of mosaicism.


Assuntos
Feminino , Humanos , Gravidez , Amniocentese , Líquido Amniótico , Aneuploidia , Aberrações Cromossômicas , Análise Citogenética , Hospitais Gerais , Mosaicismo , Segundo Trimestre da Gravidez , Diagnóstico Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA