Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 46(6): 374-386, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37077029

RESUMO

Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.


Assuntos
Resposta ao Choque Térmico , Proteostase , Humanos , Espécies Reativas de Oxigênio/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Instabilidade Genômica
2.
BMC Biol ; 20(1): 12, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996455

RESUMO

BACKGROUND: The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones. RESULTS: We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons. CONCLUSION: We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.


Assuntos
Axônios , Fator Neurotrófico Derivado do Encéfalo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/fisiologia , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas
3.
J Pathol ; 255(3): 296-310, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312845

RESUMO

Highly developed meningeal lymphatics remove waste products from the brain. Disruption of meningeal lymphatic vessels in a mouse model of amyloid pathology (5XFAD) accelerates the accumulation of amyloid plaques in the meninges and brain, and causes learning and memory deficits, suggesting that clearance of toxic wastes by lymphatic vessels plays a key role in neurodegenerative diseases. Here, we discovered that DSCR1 (Down syndrome critical region 1, known also as RCAN1, regulator of calcineurin 1) facilitates the drainage of waste products by increasing the coverage of dorsal meningeal lymphatic vessels. Furthermore, upregulation of DSCR1 in 5XFAD mice diminishes Aß pathology in the brain and improves memory defects. Surgical ligation of cervical lymphatic vessels afferent to dcLN blocks the beneficial effects of DSCR1 on Aß accumulation and cognitive function. Interestingly, intracerebroventricular delivery of AAV1-DSCR1 to 5XFAD mice is sufficient to rebuild the meningeal lymphatic system and re-establish cognitive performance. Collectively, our data indicate that DSCR1 facilitates the growth of dorsal meningeal lymphatics to improve drainage efficiency and protect against Alzheimer's disease (AD) pathologies, further highlighting that improving meningeal lymphatic function is a feasible treatment strategy for AD. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença de Alzheimer/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Dura-Máter/metabolismo , Vasos Linfáticos , Proteínas Musculares/metabolismo , Placa Amiloide/patologia , Animais , Sistema Glinfático/metabolismo , Camundongos , Camundongos Transgênicos , Regulação para Cima
4.
BMB Rep ; 53(1): 3-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31818361

RESUMO

The mitochondrial genome encodes 13 proteins that are components of the oxidative phosphorylation system (OXPHOS), suggesting that precise regulation of these genes is crucial for maintaining OXPHOS functions, including ATP production, calcium buffering, cell signaling, ROS production, and apoptosis. Furthermore, heteroplasmy or mis-regulation of gene expression in mitochondria frequently is associated with human mitochondrial diseases. Thus, various approaches have been developed to investigate the roles of genes encoded by the mitochondrial genome. In this review, we will discuss a wide range of techniques available for investigating the mitochondrial genome, mitochondrial transcription, and mitochondrial translation, which provide a useful guide to understanding mitochondrial gene expression. [BMB Reports 2020; 53(1): 3-9].


Assuntos
DNA Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Mitocondrial/metabolismo , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Mitocondriais/química , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transcrição Gênica
5.
EMBO J ; 38(14): e101293, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304631

RESUMO

Whether epigenetic factors such as DNA methylation and microRNAs interact to control adult hippocampal neurogenesis is not fully understood. Here, we show that Down syndrome critical region 1 (DSCR1) protein plays a key role in adult hippocampal neurogenesis by modulating two epigenetic factors: TET1 and miR-124. We find that DSCR1 mutant mice have impaired adult hippocampal neurogenesis. DSCR1 binds to TET1 introns to regulate splicing of TET1, thereby modulating TET1 level. Furthermore, TET1 controls the demethylation of the miRNA-124 promoter to modulate miR-124 expression. Correcting the level of TET1 in DSCR1 knockout mice is sufficient to prevent defective adult neurogenesis. Importantly, restoring DSCR1 level in a Down syndrome mouse model effectively rescued adult neurogenesis and learning and memory deficits. Our study reveals that DSCR1 plays a critical upstream role in epigenetic regulation of adult neurogenesis and provides insights into potential therapeutic strategy for treating cognitive defects in Down syndrome.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Síndrome de Down/genética , Hipocampo/citologia , MicroRNAs/genética , Oxigenases de Função Mista/genética , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogênicas/genética , Splicing de RNA , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Epigênese Genética , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Mutação , Neurogênese , Regiões Promotoras Genéticas
6.
Proc Natl Acad Sci U S A ; 116(32): 16074-16079, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332012

RESUMO

Translocation of the endoplasmic reticulum (ER) and mitochondria to the site of axon injury has been shown to facilitate axonal regeneration; however, the existence and physiological importance of ER-mitochondria tethering in the injured axons are unknown. Here, we show that a protein linking ER to mitochondria, the glucose regulated protein 75 (Grp75), is locally translated at axon injury site following axotomy, and that overexpression of Grp75 in primary neurons increases ER-mitochondria tethering to promote regrowth of injured axons. We find that increased ER-mitochondria tethering elevates mitochondrial Ca2+ and enhances ATP generation, thereby promoting regrowth of injured axons. Furthermore, intrathecal delivery of lentiviral vector encoding Grp75 to an animal with sciatic nerve crush injury enhances axonal regeneration and functional recovery. Together, our findings suggest that increased ER-mitochondria tethering at axonal injury sites may provide a therapeutic strategy for axon regeneration.


Assuntos
Axônios/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Regeneração Nervosa , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
7.
Mol Cell Biol ; 39(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30478144

RESUMO

Fragile X syndrome (FXS) caused by loss of fragile X mental retardation protein (FMRP), is the most common cause of inherited intellectual disability. Numerous studies show that FMRP is an RNA binding protein that regulates translation of its binding targets and plays key roles in neuronal functions. However, the regulatory mechanism for FMRP expression is incompletely understood. Conflicting results regarding internal ribosome entry site (IRES)-mediated fmr1 translation have been reported. Here, we unambiguously demonstrate that the fmr1 gene, which encodes FMRP, exploits both IRES-mediated translation and canonical cap-dependent translation. Furthermore, we find that heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) acts as an IRES-transacting factor (ITAF) for IRES-mediated fmr1 translation in neurons. We also show that semaphorin 3A (Sema3A)-induced axonal growth cone collapse is due to upregulation of hnRNP Q and subsequent IRES-mediated expression of FMRP. These data elucidate the regulatory mechanism of FMRP expression and its role in axonal growth cone collapse.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Sítios Internos de Entrada Ribossomal , Camundongos , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Mol Cells ; 41(12): 1000-1007, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30590907

RESUMO

Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of Ca2+ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as Ca2+ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, Ca2+ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Humanos , Doenças Neurodegenerativas/patologia
9.
J Neurosci ; 38(20): 4666-4677, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29686046

RESUMO

Mitochondrial Ca2+ uptake is gated by the mitochondrial calcium uniplex, which is comprised of mitochondrial calcium uniporter (MCU), the Ca2+ pore-forming subunit of the complex, and its regulators. Ca2+ influx through MCU affects both mitochondrial function and movement in neurons, but its direct role in mitochondrial movement has not been explored. In this report, we show a link between MCU and Miro1, a membrane protein known to regulate mitochondrial movement. We find that MCU interacts with Miro1 through MCU's N-terminal domain, previously thought to be the mitochondrial targeting sequence. Our results show that the N-terminus of MCU has a transmembrane domain that traverses the outer mitochondrial membrane, which is dispensable for MCU localization into mitochondria. However, this domain is required for Miro1 interaction and is critical for Miro1 directed movement. Together, our findings reveal Miro1 as a new component of the MCU complex, and that MCU is an important regulator of mitochondrial transport.SIGNIFICANCE STATEMENT Mitochondrial calcium level is critical for mitochondrial metabolic activity and mitochondrial transport in neurons. While it has been established that calcium influx into mitochondria is modulated by mitochondrial calcium uniporter (MCU) complex, how MCU regulates mitochondrial movement still remains unclear. Here, we discover that the N-terminus of MCU plays a different role than previously thought; it is not required for mitochondrial targeting but is essential for interaction with Miro1, an outer mitochondrial membrane protein important for mitochondrial movement. Furthermore, we show that MCU-Miro1 interaction is required to maintain mitochondrial transport. Our data identify that Miro1 is a novel component of the mitochondrial calcium uniplex and demonstrate that coupling between MCU and Miro1 as a novel mechanism modulating both mitochondrial Ca2+ uptake and mitochondrial transport.


Assuntos
Canais de Cálcio/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Neurônios/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Axônios/metabolismo , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/fisiologia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Células Cultivadas , Feminino , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/fisiologia , Gravidez , Proteínas rho de Ligação ao GTP/genética
10.
EMBO J ; 37(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440227

RESUMO

In neuronal development, dynamic rearrangement of actin promotes axonal growth cone extension, and spatiotemporal translation of local mRNAs in response to guidance cues directs axonal growth cone steering, where cofilin plays a critical role. While regulation of cofilin activity is well studied, regulatory mechanism for cofilin mRNA translation in neurons is unknown. In eukaryotic cells, proteins can be synthesized by cap-dependent or cap-independent mechanism via internal ribosome entry site (IRES)-mediated translation. IRES-mediated translation has been reported in various pathophysiological conditions, but its role in normal physiological environment is poorly understood. Here, we report that 5'UTR of cofilin mRNA contains an IRES element, and cofilin is predominantly translated by IRES-mediated mechanism in neurons. Furthermore, we show that IRES-mediated translation of cofilin is required for both axon extension and axonal growth cone steering. Our results provide new insights into the function of IRES-mediated translation in neuronal development.


Assuntos
Axônios/fisiologia , Cofilina 1/genética , Cones de Crescimento/fisiologia , Sítios Internos de Entrada Ribossomal/genética , Neurogênese/genética , Regiões 5' não Traduzidas/genética , Animais , Encéfalo/embriologia , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células/genética , Cofilina 1/metabolismo , Camundongos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética
11.
Front Cell Neurosci ; 10: 123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242435

RESUMO

The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

12.
J Cell Biol ; 213(4): 451-62, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27185837

RESUMO

Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone steering involves local protein synthesis. However, molecular components integrating these two processes have not been identified. Here, we show that Down syndrome critical region 1 protein (DSCR1) controls axon outgrowth by modulating growth cone actin dynamics through regulation of cofilin activity (phospho/dephospho-cofilin). Additionally, DSCR1 mediates brain-derived neurotrophic factor-induced local protein synthesis and growth cone turning. Our study identifies DSCR1 as a key protein that couples axon growth and pathfinding by dually regulating actin dynamics and local protein synthesis.


Assuntos
Axônios/metabolismo , Axônios/fisiologia , Cones de Crescimento/metabolismo , Cones de Crescimento/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Actinas/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Biossíntese de Proteínas/fisiologia
13.
Trends Neurosci ; 36(12): 685-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075449

RESUMO

Intellectual disability is characterized by significantly impaired cognitive abilities and is due to various etiological factors, including both genetic and non-genetic causes. Two of the most common genetic forms of intellectual disability are Fragile X syndrome (FXS) and Down syndrome (DS). Recent studies have shown that proteins altered in FXS and DS can physically interact and participate in common signaling pathways regulating dendritic spine development and local protein synthesis, thus supporting the notion that spine dysmorphogenesis and abnormal local protein synthesis may be molecular underpinnings of intellectual disability. Here we review the molecular constituents regulating local protein synthesis and spine morphology and their alterations in FXS and DS. We argue that these changes might ultimately affect synaptic homeostasis and alter cognitive performance.


Assuntos
Síndrome de Down/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Animais , Proteínas de Ligação a DNA , Espinhas Dendríticas/patologia , Síndrome de Down/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo
14.
Front Cell Neurosci ; 7: 148, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24058334

RESUMO

Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca(2) (+) plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

15.
Neurobiol Dis ; 56: 1-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23578490

RESUMO

Fragile X Syndrome (FXS) is a heritable form of mental retardation caused by a non-coding trinucleotide expansion of the FMR1 gene leading to loss of expression of this RNA binding protein. Mutations in this gene are strongly linked to enhanced Group I metabotropic glutamate receptor (mGluR) signaling. A recent report found that mGluR5-dependent endogenous cannabinoid signaling is enhanced in hippocampal slices from fmr1 knockout mice, suggesting a link between FXS and cannabinoid signaling. Alterations in cannabinoid signaling have an impact on learning and memory and may therefore be linked to some aspects of the FXS phenotype. We have used autaptic hippocampal neurons cultured from fmr1 knockout mice to further explore the interaction between endocannabinoid signaling and FMRP. These neurons express several robust forms of retrograde endocannabinoid signaling including depolarization induced suppression of excitation (DSE) and a metabotropic form (MSE) that results from Group I mGluR activation. We now report that young fmr1 neurons exhibit considerably enhanced DSE, likely via increased production of 2-AG, rather than enhanced mGluR-MSE. We find that depolarizations as brief as 50ms, which do not ordinarily produce DSE, routinely inhibited glutamate release. Furthermore, as neuronal cultures mature, CB1-receptor signaling strongly desensitizes. Our results suggest that loss of FMRP broadly affects the endocannabinoid signaling system, possibly through local 2-AG over production. Furthermore, the net effect of the loss of FMRP may actually be diminished cannabinoid signaling due to receptor desensitization as an adaptation to 2-AG overproduction.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Hipocampo/fisiopatologia , Neurônios/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Sinapses/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Baclofeno/farmacologia , Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Agonistas GABAérgicos/farmacologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/genética , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética
16.
EMBO J ; 31(18): 3655-66, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22863780

RESUMO

Most common genetic factors known to cause intellectual disability are Down syndrome and Fragile X syndrome. However, the underlying cellular and molecular mechanisms of intellectual disability remain unclear. Recently, dendritic spine dysmorphogenesis and impaired local protein synthesis are posited to contribute to the cellular mechanisms of intellectual disability. Here, we show that Down syndrome critical region1 (DSCR1) interacts with Fragile X mental retardation protein (FMRP) and regulates both dendritic spine morphogenesis and local protein synthesis. Interestingly, decreasing the level of FMRP restores the DSCR1-induced changes in dendritic spine morphology. Our results imply that DSCR1 is a novel regulator of FMRP and that Fragile X syndrome and Down syndrome may share disturbances in common pathways that regulate dendritic spine morphology and local protein synthesis.


Assuntos
Espinhas Dendríticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Musculares/fisiologia , Animais , Região CA1 Hipocampal , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Síndrome de Down/genética , Síndrome de Down/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Proteínas Musculares/metabolismo , Neurônios/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(37): 15456-61, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876166

RESUMO

The proper distribution of mitochondria is particularly vital for neurons because of their polarized structure and high energy demand. Mitochondria in axons constantly move in response to physiological needs, but signals that regulate mitochondrial movement are not well understood. Aside from producing ATP, Ca(2+) buffering is another main function of mitochondria. Activities of many enzymes in mitochondria are also Ca(2+)-dependent, suggesting that intramitochondrial Ca(2+) concentration is important for mitochondrial functions. Here, we report that mitochondrial motility in axons is actively regulated by mitochondrial matrix Ca(2+). Ca(2+) entry through the mitochondrial Ca(2+) uniporter modulates mitochondrial transport, and mitochondrial Ca(2+) content correlates inversely with the speed of mitochondrial movement. Furthermore, the miro1 protein plays a role in Ca(2+) uptake into the mitochondria, which subsequently affects mitochondrial movement.


Assuntos
Axônios/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias/metabolismo , Animais , Canais de Cálcio/metabolismo , Motivos EF Hand , Humanos , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Movimento , Mutação/genética
19.
PLoS Genet ; 6(12): e1001240, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21170301

RESUMO

Fragile X Tremor Ataxia Syndrome (FXTAS) is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 5'UTR of the fragile X syndrome (FXS) gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11) suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT) inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Inativação Gênica , Histona Desacetilases/metabolismo , Repetições de Trinucleotídeos , Acetilação , Adulto , Idoso de 80 Anos ou mais , Animais , Regulação para Baixo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Inibidores Enzimáticos/farmacologia , Olho/enzimologia , Olho/inervação , Olho/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/enzimologia , Histona Acetiltransferases/antagonistas & inibidores , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
20.
Proc Natl Acad Sci U S A ; 106(40): 17117-22, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19805187

RESUMO

At the neuronal level of Down syndrome (DS) brains, there are evidences of altered shape, number, and density of synapses, as well as aberrant endocytosis associated with accumulation of enlarged endosomes, suggesting that proteins involved in synaptic vesicle recycling may play key roles in DS neurons. However, the exact mechanism underlying those anomalies is not well understood. We hypothesize that overexpression of three genes, dap160/itsn1, synj/synj1, and nla/dscr1, located on human chromosome 21 play important roles in DS neurons. Here, we systematically investigate the effects of multiple gene overexpression on synaptic morphology and endocytosis to identify possible dominant gene or genes. We found that overexpression of individual genes lead to abnormal synaptic morphology, but all three genes are necessary to cause impaired vesicle recycling and affect locomotor vigor. Furthermore, we report that dap160 overexpression alters the subcellular distribution of synaptojanin, and overexpression of nla regulates the phosphoinositol 5' phosphatase activity of synaptojanin. These findings imply that restoring the level of any one of these genes may reduce endocytic defects seen in DS.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 21/genética , Proteínas de Ligação a DNA , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Endocitose , Potenciais Evocados , Potenciais Pós-Sinápticos Excitadores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Larva/genética , Larva/metabolismo , Larva/fisiologia , Modelos Biológicos , Atividade Motora/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/fisiologia , Monoéster Fosfórico Hidrolases/genética , Terminações Pré-Sinápticas/fisiologia , Regulação para Cima , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...