Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 68(18): 2054-2062, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37599177

RESUMO

Due to the huge energy consumption of traditional cooling- and heating-based electricity, passive radiative cooling and solar heating with a minimum carbon footprint using the outer space and Sun as natural thermodynamic resources have attracted much attention. However, most passive devices are static and monofunctional, and cannot meet the practical requirements of dynamic cooling and heating under various conditions. Here, we demonstrate a smart thermal-gated (STG) bilayer membrane that enables fully automatic and temperature-adaptive radiative cooling and solar heating. Specifically, this device can switch from reflective to absorptive (white to black) in the solar wavelength with the reduction in optical scattering upon ambient temperature, corresponding to a sunlight reflectivity change from 0.962 to 0.059 when the temperature drops below ∼30 °C, whereas its mid-infrared emissivity remains at ∼0.95. Consequently, this STG membrane achieves a temperature of ∼5 °C below ambient (a key signature of radiative cooling) under direct sunlight (peak solar irradiance >900 W m-2) in summer and a solar heating power of ∼550 W m-2 in winter. Theoretical analysis reveals the substantial advantage of this switchable cooling/heating device in potential energy saving compared with cooling-only and heating-only strategies when widely used in different climates. It is expected that this work will pave a new pathway for designing temperature-adaptive devices with zero energy consumption and provide an innovative way to achieve sustainable energy.

2.
Sci Adv ; 8(32): eabq0411, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960798

RESUMO

Radiative cooling and evaporative cooling with low carbon footprint are regarded as promising passive cooling strategies. However, the intrinsic limits of continuous water supply with complex systems for evaporative cooling, and restricted cooling power as well as the strict requirement of weather conditions for radiative cooling, hinder the scale of their practical applications. Here, we propose a tandem passive cooler composed of bilayer polymer that enables dual-functional passive cooling of radiation and evaporation. Specifically, the high reflectivity to sunlight and mid-infrared emissivity of this polymer film allows excellent radiative cooling performance, and its good atmospheric water harvesting property of underlayer ensures self-supply of water and high evaporative cooling power. Consequently, this tandem passive cooler overcomes the fundamental difficulties of radiative cooling and evaporative cooling and shows the applicability under various conditions of weather/climate. It is expected that this design can expand the practical application domain of passive cooling.

3.
Natl Sci Rev ; 8(10): nwab065, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34858610

RESUMO

Complete separation of water and solute is the ultimate goal of water treatment, for maximized resource recycling. However, commercialized approaches such as evaporative crystallizers consume a large amount of electricity with a significant carbon footprint, leading to calls for alternative energy-efficient and eco-friendly strategies. Here, inspired by schooling fish, we demonstrate a collective system self-assembled by expanded polystyrene (EPS)-core/graphene oxide (GO)-shell particles, which enables autonomous, efficient and complete water-solute separation powered by sunlight. By taking advantage of surface tension, these tailored particles school together naturally and are bonded as a system to function collectively and coordinatively, to nucleate, grow and output salt crystals continuously and automatically out of even saturated brine, to complete water-solute separation. Solar-vapor conversion efficiency over 90% and salt production rate as high as 0.39 kg m-2 h-1 are achieved under 1-sun illumination for this system. It reduces the carbon footprint of ∼50 kg for treating 1-ton saturated brine compared with the commercialized approaches.

4.
Materials (Basel) ; 13(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210088

RESUMO

An externally bonded fiber reinforced polymer (FRP) plate (or sheet) is now widely used in strengthening bending members due to its outstanding properties, such as a high strength to weight ratio, easy operating, corrosion and fatigue resistance. However, the concrete member strengthened by this technology may have a problem with the adhesion between FRP and concrete. This kind of debonding failure can be broadly classified into two modes: (a) plate end debonding at or near the plate end, and (b) intermediate crack-induced debonding (intermediate crack-induced (IC) debonding) near the loading point. The IC debonding, unlike the plate end debonding, still needs a large amount of investigation work, especially for the interface under fatigue load. In this paper, ten single shear pull-out tests were carried out under a static or fatigue load. Different load ranges and load levels were considered, and the debonding growth process was carefully recorded. The experimental results indicate that the load range is one of the main parameters, which determines the debonding growth rate. Moreover, the load level can also play an important role when loaded with the same load range. Finally, a new prediction model of the fatigue debonding growth rate was proposed, and has an excellent agreement with the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...