Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(12): 14137-14145, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35291762

RESUMO

We demonstrated how the photoelectrochemical (PEC) performance was enhanced by conformal deposition of an amorphous molybdenum sulfide (a-MoSx) thin film on a nanostructured surface of black Si using atomic layer deposition (ALD). The a-MoSx is found to predominantly consist of an octahedral structure (S-deficient metallic phase) that exhibits high electrocatalytic activity for the hydrogen evolution reaction with a Tafel slope of 41 mV/dec in an acid electrolyte. The a-MoSx has a smaller work function (4.0 eV) than that of crystalline 2H-MoS2 (4.5 eV), which induces larger energy band bending at the p-Si surface, thereby facilitating interface charge transfer. These features enabled us to achieve an outstanding kinetic overpotential of ∼0.2 V at 10 mA/cm2 and an onset potential of 0.27 V at 1 mA/cm2. Furthermore, the a-MoSx layer provides superior protection against corrosion of the Si surface, enabling long-term PEC operation of more than 50 h while maintaining 87% or more performance. This work highlights the remarkable advantages of the ALD a-MoSx layer and leads to a breakthrough in the architectural design of PEC cells to ensure both high performance and stability.

2.
Langmuir ; 33(23): 5628-5635, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28544849

RESUMO

MoS2 is a promising material to replace the Pt catalyst in the electrochemical hydrogen evolution reaction (HER). It is well known that the activity of the MoS2 catalyst in the HER is significantly promoted by doping cobalt atoms. Recently, the Co-Mo-S phase, in which cobalt atoms decorate the edge positions of the MoS2 slabs, has been identified as a co-catalytic phase in the Co-doped MoS2 (Co-MoSx) with low Co content. Here, we report the effect of the incorporation of cobalt atoms in the chemical state of the Co-MoSx catalyst, which gives rise to the co-catalytic effect. Co-MoSx catalysts with various Co contents were prepared on carbon fiber paper by a simple hydrothermal process. On the Co-MoSx catalyst with high Co content (Co/Mo ≈ 2.3), a dramatically higher catalytic activity was observed compared to that for the catalyst with low Co content (Co/Mo ≈ 0.36). Furthermore, the co-catalytic phase in the Co-MoSx catalyst with the high Co content was found not to be the Co-Mo-S phase but was identified as CoS2 by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy. It is believed that CoS2 is an alternative choice to co-catalyze HER on MoS2-based catalysts.

3.
Nanoscale ; 8(13): 7180-8, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-26973254

RESUMO

Atomic layer deposition (ALD) has emerged as an efficient method to design and prepare catalysts with atomic precision. Here, we report a comprehensive study on ALD of molybdenum sulfide (MoSx) for an electrocatalytic hydrogen evolution reaction. By using molybdenum hexacarbonyl and dimethyldisulfide as the precursors of Mo and S, respectively, the MoSx catalysts are grown at 100 °C on porous carbon fiber papers (CFPs). The ALD process results in the growth of particle-like MoSx on the CFP due to the lack of adsorption sites, and its crystallographic structure is a mixture of amorphous and nano-crystalline phases. In order to unveil the intrinsic activity of the ALD-MoSx, the exchange current densities, Tafel slopes, and turnover frequencies of the catalysts grown under various ALD conditions have been investigated by considering the fractional surface coverage of MoSx on the CFP and catalytically-active surface area. In addition, the ALD-MoSx/CFP catalysts exhibit excellent catalytic stability due to the strong adhesion of MoSx on the CFP and the mixed phase.

4.
Sci Rep ; 5: 16612, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26568414

RESUMO

Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-µm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

5.
Langmuir ; 31(18): 5220-7, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879493

RESUMO

Amorphous molybdenum sulfide (MoSx) has been identified as an excellent catalyst for the hydrogen evolution reaction (HER). It is still a challenge to prepare amorphous MoSx as a more active and stable catalyst for the HER. Here the amorphous MoSx catalysts are prepared on carbon fiber paper (CFP) substrates at 200 °C by a simple hydrothermal method using molybdic acid and thioacetamide. Because the CFP is intrinsically hydrophobic due to its graphene-like carbon structure, two kinds of hydrophilic pretreatment methods [plasma pretreatment (PP) and electrochemical pretreatment (EP)] are investigated to convert the hydrophobic surface of the CFP to be hydrophilic prior to the hydrothermal growth of MoSx. In the HER catalysis, the MoSx catalysts grown on the pretreated CFPs reach a cathodic current density of 10 mA/cm(2) at a much lower overpotential of 231 mV on the MoSx/EP-CFP and 205 mV on the MoSx/PP-CFP, compared to a high overpotential of 290 mV on the MoSx of the nonpretreated CFP. Turnover frequency per site is also significantly improved when the MoSx are grown on the pretreated CFPs. However, the Tafel slopes of all amorphous MoSx catalysts are in the range of 46-50 mV/dec, suggesting the Volmer-Heyrovsky mechanism as a major pathway for the HER. In addition, regardless of the presence or absence of the pretreatment, the hydrothermally grown MoSx catalyst on CFP exhibits such excellent stability that the degradation of the cathodic current density is negligible after 1000 cycles in a stability test, possibly due to the relatively high growth temperature.

6.
Nanoscale ; 7(18): 8368-77, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25779772

RESUMO

Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 µm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process.

7.
Langmuir ; 31(3): 1196-202, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25547664

RESUMO

Recently amorphous MoS2 thin film has attracted great attention as an emerging material for electrochemical hydrogen evolution reaction (HER) catalyst. Here we prepare the amorphous MoS2 catalyst on Au by atomic layer deposition (ALD) using molybdenum hexacarbonyl (Mo(CO)6) and dimethyl disulfide (CH3S2CH3) as Mo and S precursors, respectively. Each active site of the amorphous MoS2 film effectively catalyzes the HER with an excellent turnover frequency of 3 H2/s at 0.215 V versus the reversible hydrogen electrode (RHE). The Tafel slope (47 mV/dec) on the amorphous film suggests the Volmer-Heyrovsky mechanism as a major pathway for the HER in which a primary discharging step (Volmer reaction) for hydrogen adsorption is followed by the rate-determining electrochemical desorption of hydrogen gas (Heyrovsky reaction). In addition, the amorphous MoS2 thin film is electrically evaluated to be rather conductive (0.22 Ω(-1) cm(-1) at room temperature) with a low activation energy of 0.027 eV. It is one of origins for the high catalytic activity of the amorphous MoS2 catalyst.

8.
Nanoscale ; 6(23): 14453-8, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25340905

RESUMO

Recently MoS2 with a two-dimensional layered structure has attracted great attention as an emerging material for electronics and catalysis applications. Although atomic layer deposition (ALD) is well-known as a special modification of chemical vapor deposition in order to grow a thin film in a manner of layer-by-layer, there is little literature on ALD of MoS2 due to a lack of suitable chemistry. Here we report MoS2 growth by ALD using molybdenum hexacarbonyl and dimethyldisulfide as Mo and S precursors, respectively. MoS2 can be directly grown on a SiO2/Si substrate at 100 °C via the novel chemical route. Although the as-grown films are shown to be amorphous in X-ray diffraction analysis, they clearly show characteristic Raman modes (E(1)2g and A1g) of 2H-MoS2 with a trigonal prismatic arrangement of S-Mo-S units. After annealing at 900 °C for 5 min under Ar atmosphere, the film is crystallized for MoS2 layers to be aligned with its basal plane parallel to the substrate.

9.
Nanotechnology ; 25(2): 025705, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24334621

RESUMO

Vertically grown single-walled carbon nanotube (V-SWCNT) forests, synthesized by water-assisted plasma-enhanced chemical vapor deposition, were studied using polarized micro-Raman spectroscopy. Among three different sections (root, center and end) along the vertical growth direction, the degree of V-SWCNT alignment was highest in the center section. Raman frequency red-shifts up to 7 and 13 cm(-1), for RBM and G-band, respectively, were observed in the center section, with respect to the Raman frequencies measured in the root and the end sections. Raman frequency downshift and concurrent linewidth broadening of the G-band, revealing a localized strain, were also observed in the center section. The existence of a localized strain in the center section of the V-SWCNT was further confirmed by observing a strong polarization anisotropy of up to 8 cm(-1) in the G-band Raman frequency for different polarized Raman scattering configurations at the same probed spot.

10.
Nanotechnology ; 21(34): 345301, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20671362

RESUMO

We report the large-scale assembly of type-switchable field effect transistors (FETs) based on carbon nanotubes (CNTs) and nanoparticles (NPs). In this device, the charges stored in NPs adjacent to ambipolar CNT channels were adjusted to control the carrier type and density in the channels. We demonstrated the real-time reconfiguration of individual FET types and logic circuit functionality. Theoretical simulation of a model system was provided to explain this doping effect. This work takes advantage of the ambipolar properties of CNTs and opens up the possibility to build new types of devices with reconfigurable functionalities.

11.
J Nanosci Nanotechnol ; 10(6): 3934-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20355394

RESUMO

Carbon nanotubes (CNTs) were implanted with thermally decomposed oxygen (O2+) and nitrogen (N2+) ions at an acceleration voltage of 20 V. With a low dose of oxygen ions, the CNT-FET exhibited p-type behaviors with substantial changes in threshold voltage and in the slope of the source-drain current (l(sd)). However, at high dosages, the device exhibited metallic behaviors. After nitrogen doping, we did not observe the effects of electron doping. Instead, nitrogen doping significantly increased l(sd) with no gating effect. Our theoretical results showed that the metallic behavior of nitrogen-doped CNTs arose from the impurity conduction band, which results from the overlapping wave function of the nitrogen impurity.

12.
Nanotechnology ; 20(29): 295201, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19567966

RESUMO

Nearly perfect semiconducting single-walled carbon nanotube random network thin film transistors were fabricated and their reproducible transport properties were investigated. The networked single-walled carbon nanotubes were directly grown by water-assisted plasma-enhanced chemical vapor deposition. Optical analysis confirmed that the nanotubes were mostly semiconductors without clear metallic resonances in both the Raman and the UV-vis-IR spectroscopy. The transistors made by the nanotube networks whose density was much larger than the percolation threshold also showed no metallic paths. Estimation based on the conductance change of semiconducting nanotubes in the SWNT network due to applied gate voltage difference (conductance difference for on and off state) indicated a preferential growth of semiconducting nanotubes with an advantage of water-assisted PECVD. The nanotube transistors showed 10(-5) of on/off ratio and approximately 8 cm2 V(-1) s(-1) of field effect mobility.

14.
Nanotechnology ; 19(28): 285705, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-21828739

RESUMO

The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.

15.
Nanotechnology ; 18(49): 495203, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-20442469

RESUMO

We report a transistor of randomly networked single-walled carbon nanotubes on a glass substrate. The carbon nanotube networks acting as the active components of the thin film transistor were selectively formed on the transistor channel areas that were previously patterned with catalysts to avoid the etching process for isolating nanotubes. The nanotube density was more than 50 microm(-2), which is much larger than the percolation threshold. Transistors were successfully fabricated with a conducting and transparent ZnO for the back-side gate and the top-side gate. This allows the transparent electronics or suggests thin film applications of nanotubes for future opto-electronics.

16.
J Am Chem Soc ; 127(36): 12498-9, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16144391

RESUMO

Preferential growth of pure single-walled carbon nanotubes (SWNTs) over multi-walled carbon nanotubes (MWNTs) was demonstrated at low temperature by water plasma chemical vapor deposition. Water plasma lowered the growth temperature down to 450 degrees C, and the grown nanotubes were single-walled without carbonaceous impurities and MWNTs. The preferential growth of pure SWNTs over MWNTs was proven with micro-Raman spectroscopy, high-resolution transmission electron microscopy, and electrical characterization of the grown nanotube networks.


Assuntos
Nanotubos de Carbono/química , Temperatura , Cristalização , Semicondutores , Análise Espectral Raman , Propriedades de Superfície , Volatilização , Água/química
17.
J Am Chem Soc ; 127(23): 8300-1, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15941260

RESUMO

We demonstrate a simple purification method of carbon nanotubes via sulfidation reaction of carbon, C + 2S --> CS2, to selectively remove carbonaceous impurities from nanotubes. The sulfidative purification of carbon nanotubes integrated in field-effect transistors results in a dramatic improvement of switching characteristics due to removal of carbonaceous impurities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...