Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 76(2): 181-191, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37610274

RESUMO

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS: We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS: Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION: Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.


Assuntos
Ácidos Aminossalicílicos , Artrite Experimental , Artrite Reumatoide , Humanos , Animais , Camundongos , Anticorpos Antiproteína Citrulinada , Autoanticorpos , Desiminases de Arginina em Proteínas , Fibrinogênio/metabolismo , Colágeno
2.
PLoS Pathog ; 16(10): e1008868, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33048992

RESUMO

While antiretroviral therapy (ART) has effectively revolutionized HIV care, the virus is never fully eliminated. Instead, immune dysfunction, driven by persistent non-specific immune activation, ensues and progressively leads to premature immunologic aging. Current biomarkers monitoring immunologic changes encompass generic inflammatory biomarkers, that may also change with other infections or disease states, precluding the antigen-specific monitoring of HIV-infection associated changes in disease. Given our growing appreciation of the significant changes in qualitative and quantitative properties of disease-specific antibodies in HIV infection, we used a systems approach to explore humoral profiles associated with HIV control. We found that HIV-specific antibody profiles diverge by spontaneous control of HIV, treatment status, viral load and reservoir size. Specifically, HIV-specific antibody profiles representative of changes in viral load were largely quantitative, reflected by differential HIV-specific antibody levels and Fc-receptor binding. Conversely, HIV-specific antibody features that tracked with reservoir size exhibited a combination of quantitative and qualitative changes marked by more distinct subclass selection profiles and unique HIV-specific Fc-glycans. Our analyses suggest that HIV-specific antibody Fc-profiles provide antigen-specific resolution on both cell free and cell-associated viral loads, pointing to potentially novel biomarkers to monitor reservoir activity.


Assuntos
Biomarcadores/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/sangue , HIV-1/imunologia , Carga Viral/imunologia , Latência Viral/imunologia , Replicação Viral , Antirretrovirais/uso terapêutico , Anticorpos Anti-HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Humanos , Carga Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
3.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700608

RESUMO

HIV infection is controlled immunologically in a small subset of infected individuals without antiretroviral therapy (ART), though the mechanism of control is unclear. CD8+ T cells are a critical component of HIV control in many immunological controllers. NK cells are also believed to have a role in controlling HIV infection, though their role is less well characterized. We used mass cytometry to simultaneously measure the levels of expression of 24 surface markers on peripheral NK cells from HIV-infected subjects with various degrees of HIV natural control; we then used machine learning to identify NK cell subpopulations that differentiate HIV controllers from noncontrollers. Using CITRUS (cluster identification, characterization, and regression), we identified 3 NK cell subpopulations that differentiated subjects with chronic HIV viremia (viremic noncontrollers [VNC]) from individuals with undetectable HIV viremia without ART (elite controllers [EC]). In a parallel approach, we identified 11 NK cell subpopulations that differentiated HIV-infected subject groups using k-means clustering after dimensionality reduction by t-neighbor stochastic neighbor embedding (tSNE) or linear discriminant analysis (LDA). Among these additional 11 subpopulations, the frequencies of 5 correlated with HIV DNA levels; importantly, significance was retained in 2 subpopulations in analyses that included only cohorts without detectable viremia. By comparing the surface marker expression patterns of all identified subpopulations, we revealed that the CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells are more abundant in EC and HIV-negative controls than in VNC and that the frequency of these cells correlated with HIV DNA levels. We hypothesize that this population may have a role in immunological control of HIV infection.IMPORTANCE HIV infection results in the establishment of a stable reservoir of latently infected cells; ART is usually required to keep viral replication under control and disease progression at bay, though a small subset of HIV-infected subjects can control HIV infection without ART through immunological mechanisms. In this study, we sought to identify subpopulations of NK cells that may be involved in the natural immunological control of HIV infection. We used mass cytometry to measure surface marker expression on peripheral NK cells. Using two distinct semisupervised machine learning approaches, we identified a CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells that differentiates HIV controllers from noncontrollers. These cells can be sorted out for future functional studies to assess their potential role in the immunological control of HIV infection.


Assuntos
Infecções por HIV/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Antígeno CD11b/imunologia , Antígeno CD56/imunologia , Antígenos CD57/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular Tumoral , DNA Viral/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Células K562 , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores de IgG/imunologia , Viremia/imunologia , Viremia/virologia
4.
PLoS One ; 12(5): e0177818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542307

RESUMO

Pyruvate kinase (PKLR) deficiency protects mice and humans against blood-stage malaria. Although mouse strain AcB62 carries a malaria-protective PklrI90N genetic mutation, it is phenotypically susceptible to blood stage malaria induced by infection with Plasmodium chabaudi AS, suggesting a genetic modifier of the PklrI90N protective effect. Linkage analysis in a F2 cross between AcB62 (PklrI90N) and another PK deficient strain CBA/Pk (PklrG338D) maps this modifier (designated Char10) to chromosome 9 (LOD = 10.8, 95% Bayesian CI = 50.7-75Mb). To study the mechanistic basis of the Char10 effect, we generated an incipient congenic line (Char10C) that harbors the Char10 chromosome 9 segment from AcB62 fixed on the genetic background of CBA/Pk. The Char10 effect is shown to be highly penetrant as the Char10C line recapitulates the AcB62 phenotype, displaying high parasitemia following P. chabaudi infection, compared to CBA/Pk. Char10C mice also display a reduction in anemia phenotypes associated with the PklrG338D mutation including decreased splenomegaly, decreased circulating reticulocytes, increased density of mature erythrocytes, increased hematocrit, as well as decreased iron overload in kidney and liver and decreased serum iron. Erythroid lineage analyses indicate that the number of total TER119+ cells as well as the numbers of the different CD71+/CD44+ erythroblast sub-populations were all found to be lower in Char10C spleen compared to CBA/Pk. Char10C mice also displayed lower number of CFU-E per spleen compared to CBA/Pk. Taken together, these results indicate that the Char10 locus modulates the severity of pyruvate kinase deficiency by regulating erythroid responses in the presence of PK-deficiency associated haemolytic anemia.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/genética , Cromossomos de Mamíferos/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Malária/genética , Piruvato Quinase/deficiência , Erros Inatos do Metabolismo dos Piruvatos/genética , Anemia Hemolítica Congênita não Esferocítica/metabolismo , Anemia Hemolítica Congênita não Esferocítica/fisiopatologia , Animais , Eritrócitos/metabolismo , Eritrócitos/patologia , Eritropoese/genética , Humanos , Ferro/metabolismo , Camundongos , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Erros Inatos do Metabolismo dos Piruvatos/metabolismo , Erros Inatos do Metabolismo dos Piruvatos/fisiopatologia
5.
Curr Top Microbiol Immunol ; 395: 147-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26099194

RESUMO

Natural killer (NK) cells are important in host defense against tumors and microbial pathogens. Recent studies indicate that NK cells share many features with the adaptive immune system, and like B cells and T cells, NK cells can acquire immunological memory. Here, we review evidence for NK cell memory and the molecules involved in the generation and maintenance of these self-renewing NK cells that provide enhanced protection of the host.


Assuntos
Memória Imunológica , Células Matadoras Naturais/imunologia , Viroses/imunologia , Animais , Humanos
6.
J Exp Med ; 211(13): 2669-80, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25422494

RESUMO

Natural killer (NK) cells play a key role in the host response to cytomegalovirus (CMV) and can mediate an enhanced response to secondary challenge with CMV. We assessed the ability of mouse CMV (MCMV)-induced memory Ly49H(+) NK cells to respond to challenges with influenza, an acute viral infection localized to the lung, and Listeria monocytogenes, a systemic bacterial infection. MCMV-memory NK cells did not display enhanced activation or proliferation after infection with influenza or Listeria, as compared with naive Ly49H(+) or Ly49H(-) NK cells. Memory NK cells also showed impaired activation compared with naive cells when challenged with a mutant MCMV lacking m157, highlighting their antigen-specific response. Ex vivo, MCMV-memory NK cells displayed reduced phosphorylation of STAT4 and STAT1 in response to stimulation by IL-12 and type I interferon (IFN), respectively, and IFN-γ production was reduced in response to IL-12 + IL-18 compared with naive NK cells. However, costimulation of MCMV-memory NK cells with IL-12 and m157 antigen rescues their impaired response compared with cytokines alone. These findings reveal that MCMV-primed memory NK cells are diminished in their response to cytokine-driven bystander responses to heterologous infections as they become specialized and antigen-specific for the control of MCMV upon rechallenge.


Assuntos
Antígenos Virais/imunologia , Efeito Espectador/imunologia , Epitopos/imunologia , Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/imunologia , Listeriose/imunologia , Muromegalovirus/fisiologia , Infecções por Orthomyxoviridae/imunologia , Transferência Adotiva , Animais , Proliferação de Células , Citocinas/farmacologia , Modelos Animais de Doenças , Cães , Feminino , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/virologia , Memória Imunológica/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Células Matadoras Naturais/citologia , Listeriose/complicações , Listeriose/virologia , Ativação Linfocitária/imunologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Mutação/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Receptores de Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Exp Med ; 211(7): 1289-96, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24958849

RESUMO

Apoptosis is critical for the elimination of activated lymphocytes after viral infection. Proapoptotic factor Bim (Bcl2l11) controls T lymphocyte contraction and the formation of memory T cells after infection. Natural killer (NK) cells also undergo antigen-driven expansion to become long-lived memory cells after mouse cytomegalovirus (MCMV) infection; therefore, we examined the role of Bim in regulating the MCMV-driven memory NK cell pool. Despite responding similarly early after infection, Bcl2l11(-/-) Ly49H(+) NK cells show impaired contraction and significantly outnumber wild-type (WT) cells after the expansion phase. The inability to reduce the effector pool leads to a larger Bcl2l11(-/-) NK memory subset, which displays a less mature phenotype (CD11b(lo), CD27(+)) and lower levels of NK cell memory-associated markers KLRG1 and Ly6C. Bcl2l11(-/-) memory NK cells demonstrate a reduced response to m157-mediated stimulation and do not protect as effectively as WT memory NK cells in an MCMV challenge model. Thus, Bim-mediated apoptosis drives selective contraction of effector NK cells to generate a pool of mature, MCMV-specific memory cells.


Assuntos
Antígenos Virais/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Infecções por Herpesviridae/imunologia , Memória Imunológica , Células Matadoras Naturais/imunologia , Proteínas de Membrana/imunologia , Muromegalovirus/imunologia , Proteínas Proto-Oncogênicas/imunologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos Virais/genética , Apoptose/genética , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Células Matadoras Naturais/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética
8.
Am J Physiol Lung Cell Mol Physiol ; 307(2): L186-96, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24838750

RESUMO

Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.


Assuntos
Quimiocina CXCL10/biossíntese , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Fator Regulador 1 de Interferon/fisiologia , Viroses/fisiopatologia , Brônquios/citologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Feminino , Gefitinibe , Humanos , Vírus da Influenza A Subtipo H1N1 , Interleucina-8/biossíntese , Células Matadoras Naturais/fisiologia , Quinazolinas/farmacologia , Vírus Sinciciais Respiratórios , Rhinovirus , Transdução de Sinais
9.
J Exp Med ; 210(10): 1929-36, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23999497

RESUMO

Viruses suppress host responses to increase infection, and understanding these mechanisms has provided insights into cellular signaling and led to novel therapies. Many viruses (e.g., Influenza virus, Rhinovirus [RV], Cytomegalovirus, Epstein-Barr virus, and Hepatitis C virus) activate epithelial epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, but the role of EGFR in viral pathogenesis is not clear. Interferon (IFN) signaling is a critical innate antiviral host response and recent experiments have implicated IFN-λ, a type III IFN, as the most significant IFN for mucosal antiviral immune responses. Despite the importance of IFN-λ in epithelial antiviral responses, the role and mechanisms of epithelial IFN-λ signaling have not been fully elucidated. We report that respiratory virus-induced EGFR activation suppresses endogenous airway epithelial antiviral signaling. We found that Influenza virus- and RV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-induced IFN-λ production and increased viral infection. In addition, inhibition of EGFR during viral infection augmented IRF1 and IFN-λ, which resulted in decreased viral titers in vitro and in vivo. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.


Assuntos
Receptores ErbB/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , Interferon gama/imunologia , Inibidores de Proteínas Quinases/farmacologia , Mucosa Respiratória/virologia , Viroses/imunologia , Viroses/metabolismo , Internalização do Vírus
10.
Nat Immunol ; 14(6): 619-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644507

RESUMO

The differentiation of αßT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4(+)CD8(+) stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4(+) or CD8(+) lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Proliferação de Células , Células Cultivadas , Análise por Conglomerados , Citometria de Fluxo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
11.
Nat Immunol ; 14(6): 633-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624555

RESUMO

The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, we found differentiation stage-specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously unknown regulators, we emphasize the role of ETV5 in the differentiation of γδ T cells. As the transcriptional programs of human and mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.


Assuntos
Algoritmos , Regulação da Expressão Gênica/imunologia , Sistema Imunitário/metabolismo , Transcrição Gênica/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Humanos , Sistema Imunitário/citologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transativadores/genética , Transativadores/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transcriptoma/genética , Transcriptoma/imunologia
12.
Trends Immunol ; 34(6): 251-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499559

RESUMO

Immunological memory has traditionally been regarded as a unique feature of the adaptive immune response, mediated in an antigen-specific manner by T and B lymphocytes. All other hematopoietic cells, including natural killer (NK) cells, are classified as innate immune cells, which have been considered short-lived but can respond rapidly against pathogens in a manner not thought to be driven by antigen. Interestingly, NK cells have recently been shown to survive long term after antigen exposure and subsequently mediate antigen-specific recall responses. In this review, we address the similarities between, and the controversies surrounding, three major viewpoints of NK memory that have arisen from these recent studies: (i) mouse cytomegalovirus (MCMV)-induced memory; (ii) cytokine-induced memory; and (iii) liver-restricted memory cells.


Assuntos
Infecções por Citomegalovirus/imunologia , Memória Imunológica , Células Matadoras Naturais/imunologia , Fígado/imunologia , Animais , Antígenos Virais/imunologia , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Citocinas/imunologia , Humanos , Ativação Linfocitária , Camundongos
13.
Nat Immunol ; 13(10): 1000-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22902830

RESUMO

Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes with cytotoxic CD8(+) T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, many encoding molecules with unknown functions. Resting NK cells demonstrate a 'preprimed' state compared with naive T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene expression of NK cells in various states.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Animais , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Células Matadoras Naturais/citologia , Camundongos , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcrição Gênica
14.
Mamm Genome ; 22(7-8): 486-94, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21437649

RESUMO

Malaria continues to be a serious threat to global health. The malaria problem is compounded by the absence of an efficacious vaccine and widespread drug resistance in the Plasmodium malarial parasite. The host factors and parasite virulence determinants that regulate early response to infection and subsequent onset of protective immunity are poorly understood. The molecular characterization of this early host:pathogen interface may identify novel targets for prophylactic or therapeutic intervention. Genetic analyses in mouse model of malaria show that inactivation of the enzyme pantetheinase (Char9 locus) causes susceptibility to blood-stage infection. The pantetheinase product cysteamine is an inexpensive and non-toxic aminothiol that is approved for lifelong clinical management of nephropathic cystinosis. In mouse models of infection, cysteamine not only displays anti-malarial activity of its own, but also dramatically potentiates the anti-malarial activity of artemisinin, at doses currently used for the clinical management of cystinosis. Therefore, the inclusion of cysteamine in current artemisinin combination therapies may significantly increase efficacy and may also prove effective against emerging artemisinin-resistant human Plasmodium parasite.


Assuntos
Artemisininas/uso terapêutico , Cisteamina/uso terapêutico , Modelos Animais de Doenças , Malária/tratamento farmacológico , Camundongos/genética , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Cisteamina/metabolismo , Quimioterapia Combinada , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Malária/genética , Malária/metabolismo , Malária/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium/fisiologia
15.
BMC Infect Dis ; 10: 299, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20950462

RESUMO

BACKGROUND: Members of the CD36 scavenger receptor family have been implicated as sensors of microbial products that mediate phagocytosis and inflammation in response to a broad range of pathogens. We investigated the role of CD36 in host response to mycobacterial infection. METHODS: Experimental Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection in Cd36+/+ and Cd36-/- mice, and in vitro co-cultivation of M. tuberculosis, BCG and M. marinum with Cd36+/+ and Cd36-/-murine macrophages. RESULTS: Using an in vivo model of BCG infection in Cd36+/+ and Cd36-/- mice, we found that mycobacterial burden in liver and spleen is reduced (83% lower peak splenic colony forming units, p < 0.001), as well as the density of granulomas, and circulating tumor necrosis factor (TNF) levels in Cd36-/- animals. Intracellular growth of all three mycobacterial species was reduced in Cd36-/- relative to wild type Cd36+/+ macrophages in vitro. This difference was not attributable to alterations in mycobacterial uptake, macrophage viability, rate of macrophage apoptosis, production of reactive oxygen and/or nitrogen species, TNF or interleukin-10. Using an in vitro model designed to recapitulate cellular events implicated in mycobacterial infection and dissemination in vivo (i.e., phagocytosis of apoptotic macrophages containing mycobacteria), we demonstrated reduced recovery of viable mycobacteria within Cd36-/- macrophages. CONCLUSIONS: Together, these data indicate that CD36 deficiency confers resistance to mycobacterial infection. This observation is best explained by reduced intracellular survival of mycobacteria in the Cd36-/- macrophage and a role for CD36 in the cellular events involved in granuloma formation that promote early bacterial expansion and dissemination.


Assuntos
Antígenos CD36/deficiência , Interações Hospedeiro-Patógeno , Infecções por Mycobacterium/patologia , Mycobacterium bovis/patogenicidade , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Animais , Carga Bacteriana , Antígenos CD36/imunologia , Células Cultivadas , Modelos Animais de Doenças , Fígado/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/imunologia , Mycobacterium marinum/imunologia , Mycobacterium tuberculosis/imunologia , Baço/microbiologia , Virulência
16.
Antimicrob Agents Chemother ; 54(8): 3262-70, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20479197

RESUMO

Malaria continues to be a major threat to global health. Artemisinin combination therapy (ACT) is the recommended treatment for clinical malaria; however, recent reports of parasite resistance to artemisinin in certain areas where malaria is endemic have stressed the need for developing more efficacious ACT. We report that cysteamine (Cys), the aminothiol used to treat nephropathic cystinosis in humans, strongly potentiates the efficacy of artemisinin against the Plasmodium parasite in vivo. Using a mouse model of infection with Plasmodium chabaudi AS, we observe that Cys dosing used to treat cystinosis in humans can strongly potentiate (by 3- to 4-fold) the antimalarial properties of the artemisinin derivatives artesunate and dihydroartemisinin. Addition of Cys to suboptimal doses of artemisinin delays the appearance of blood parasitemia, strongly reduces the extent of parasite replication, and significantly improves survival in a model of lethal P. chabaudi infection. Cys, the natural product of the enzyme pantetheinase, has a history of safe use for the clinical management of cystinosis. Our findings suggest that Cys could be included in novel ACTs to improve efficacy against Plasmodium parasite replication, including artemisinin-resistant isolates. Future work will include clinical evaluation of novel Cys-containing ACTs and elucidation of the mechanism underlying the potentiation effect of Cys.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cisteamina/uso terapêutico , Cistinose/tratamento farmacológico , Malária/tratamento farmacológico , Plasmodium chabaudi/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Cisteamina/administração & dosagem , Cisteamina/farmacocinética , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Malária/mortalidade , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium chabaudi/crescimento & desenvolvimento
17.
Exp Parasitol ; 125(4): 315-24, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20219464

RESUMO

In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection.


Assuntos
Antimaláricos/farmacologia , Cisteamina/farmacologia , Malária/tratamento farmacológico , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Amidoidrolases/metabolismo , Animais , Antimaláricos/uso terapêutico , Candidíase/tratamento farmacológico , Doença de Chagas/tratamento farmacológico , Cloroquina/farmacologia , Cisteamina/uso terapêutico , Citocinas/sangue , Citocinas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Proteínas Ligadas por GPI , Hemoglobinas/metabolismo , Humanos , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
18.
N Engl J Med ; 358(17): 1805-10, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18420493

RESUMO

Malaria that is caused by Plasmodium falciparum is a significant global health problem. Genetic characteristics of the host influence the severity of disease and the ultimate outcome of infection, and there is evidence of coevolution of the plasmodium parasite with its host. In humans, pyruvate kinase deficiency is the second most common erythrocyte enzyme disorder. Here, we show that pyruvate kinase deficiency provides protection against infection and replication of P. falciparum in human erythrocytes, raising the possibility that mutant pyruvate kinase alleles may confer a protective advantage against malaria in human populations in areas where the disease is endemic.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/enzimologia , Plasmodium falciparum , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Adulto , Animais , Eritrócitos/enzimologia , Feminino , Predisposição Genética para Doença , Humanos , Malária Falciparum/sangue , Malária Falciparum/genética , Masculino , Mutação , Fagocitose , Polimorfismo de Nucleotídeo Único
19.
J Exp Med ; 205(5): 1133-43, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18426986

RESUMO

Experimental infection of mice with Plasmodium berghei ANKA (PbA) provides a powerful model to define genetic determinants that regulate the development of cerebral malaria (CM). Based on the hypothesis that excessive activation of the complement system may confer susceptibility to CM, we investigated the role of C5/C5a in the development of CM. We show a spectrum of susceptibility to PbA in a panel of inbred mice; all CM-susceptible mice examined were found to be C5 sufficient, whereas all C5-deficient strains were resistant to CM. Transfer of the C5-defective allele from an A/J (CM resistant) onto a C57BL/6 (CM-susceptible) genetic background in a congenic strain conferred increased resistance to CM; conversely, transfer of the C5-sufficient allele from the C57BL/6 onto the A/J background recapitulated the CM-susceptible phenotype. The role of C5 was further explored in B10.D2 mice, which are identical for all loci other than C5. C5-deficient B10.D2 mice were protected from CM, whereas C5-sufficient B10.D2 mice were susceptible. Antibody blockade of C5a or C5a receptor (C5aR) rescued susceptible mice from CM. In vitro studies showed that C5a-potentiated cytokine secretion induced by the malaria product P. falciparum glycosylphosphatidylinositol and C5aR blockade abrogated these amplified responses. These data provide evidence implicating C5/C5a in the pathogenesis of CM.


Assuntos
Complemento C5/deficiência , Complemento C5a/antagonistas & inibidores , Malária Cerebral/prevenção & controle , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Animais , Complemento C5/antagonistas & inibidores , Complemento C5/genética , Complemento C5a/metabolismo , Cruzamentos Genéticos , DNA/genética , Primers do DNA , Malária Cerebral/sangue , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Exp Med ; 204(12): 2949-61, 2007 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-17998386

RESUMO

The mouse response to acute Salmonella typhimurium infection is complex, and it is under the influence of several genes, as well as environmental factors. In a previous study, we identified two novel Salmonella susceptibility loci, Ity4 and Ity5, in a (AcB61 x 129S6)F2 cross. The peak logarithm of odds score associated with Ity4 maps to the region of the liver and red blood cell (RBC)-specific pyruvate kinase (Pklr) gene, which was previously shown to be mutated in AcB61. During Plasmodium chabaudi infection, the Pklr mutation protects the mice against this parasite, as indicated by improved survival and lower peak parasitemia. Given that RBC defects have previously been associated with resistance to malaria and susceptibility to Salmonella, we hypothesized that Pklr is the gene underlying Ity4 and that it confers susceptibility to acute S. typhimurium infection in mice. Using a fine mapping approach combined with complementation studies, comparative studies, and functional analysis, we show that Pklr is the gene underlying Ity4 and that it confers susceptibility to acute S. typhimurium infection in mice through its effect on the RBC turnover and iron metabolism.


Assuntos
Predisposição Genética para Doença , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Infecções por Salmonella/genética , Salmonella typhimurium/patogenicidade , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Escore Lod , Camundongos , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...