Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 31(17): 6493-503, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21525290

RESUMO

In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-κB (NF-κB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKα/IKKß kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKα kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKα and IKKß phosphorylation and RelA nuclear translocation, suggesting NF-κB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKα, IKKß, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-κB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-κB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-x(L) overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.


Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios Motores/fisiologia , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Proteína de Ligação a CREB/metabolismo , Sobrevivência Celular , Células Cultivadas , Cromonas/farmacologia , Embrião de Mamíferos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Morfolinas/farmacologia , Neurônios Motores/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Peptídeos/farmacologia , Fosforilação/fisiologia , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Transfecção/métodos , Proteína bcl-X/metabolismo
2.
Neurobiol Dis ; 42(3): 415-26, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21333739

RESUMO

Spinal muscular atrophy (SMA) is a motoneuron disorder characterized by deletions or specific mutations in the Survival Motor Neuron gene (SMN). SMN is ubiquitously expressed and has a general role in the assembly of small nuclear ribonucleoprotein (snRNP) and pre-mRNA splicing requirements. However, in motoneuron axons SMN deficiency results in inappropriate levels of certain transcripts in the distal axon, suggesting that the specific susceptibility of motoneurons to SMN deficiency is related to a specialized function in these cells. Although mouse models of SMA have been generated and are useful for in vivo and in vitro studies, the limited number of isolated MNs that could be obtained from them makes it difficult to perform biochemical, genetic and pharmacological approaches. We describe here an in vitro model of isolated embryonic mouse motoneurons in which the cellular levels of endogenous SMN are reduced. These cells show neurite degeneration and cell death after several days of SMN knockdown. We found that the over-expression of the anti-apoptotic protein Bcl-x(L) into motoneurons rescues these cells from the phenotypic changes observed. This result demonstrates that Bcl-x(L) signaling could be a possible pharmacological target of SMA therapeutics.


Assuntos
Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , Degeneração Neural/metabolismo , Neuritos/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína bcl-X/metabolismo , Análise de Variância , Animais , Western Blotting , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Neuritos/patologia , Ratos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína bcl-X/genética
3.
J Neurochem ; 110(6): 1842-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19627436

RESUMO

Intracellular calcium (Ca(2+)) concentration determines neuronal dependence on neurotrophic factors (NTFs) and susceptibility to cell death. Ca(2+) overload induces neuronal death and the consequences are thought to be a probable cause of motoneuron (MN) degeneration in neurodegenerative diseases. In the present study, we show that membrane depolarization with elevated extracellular potassium (K(+)) was toxic to cultured embryonic mouse spinal cord MNs even in the presence of NTFs. Membrane depolarization induced an intracellular Ca(2+) increase. Depolarization-induced toxicity and increased intracellular Ca(2+) were blocked by treatment with antagonists to some of the voltage-gated Ca(2+) channels (VGCCs), indicating that Ca(2+) influx through these channels contributed to the toxic effect of depolarization. Ca(2+) activates the calpains, cysteine proteases that degrade a variety of substrates, causing cell death. We investigated the functional involvement of calpain using a calpain inhibitor and calpain gene silencing. Pre-treatment of MNs with calpeptin (a cell-permeable calpain inhibitor) rescued MNs survival; calpain RNA interference had the same protective effect, indicating that endogenous calpain contributes to the cell death caused by membrane depolarization. These findings suggest that MNs are especially vulnerable to extracellular K(+) concentration, which induces cell death by causing both intracellular Ca(2+) increase and calpain activation.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/citologia , Análise de Variância , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/metabolismo , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Proteínas com Homeodomínio LIM , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios Motores/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Cloreto de Potássio/farmacologia , RNA Interferente Pequeno/farmacologia , Fatores de Tempo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...