Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 536, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796545

RESUMO

Spectral imaging has the potential to become a key technique in interventional medicine as it unveils much richer optical information compared to conventional RBG (red, green, and blue)-based imaging. Thus allowing for high-resolution functional tissue analysis in real time. Its higher information density particularly shows promise for the development of powerful perfusion monitoring methods for clinical use. However, even though in vivo validation of such methods is crucial for their clinical translation, the biomedical field suffers from a lack of publicly available datasets for this purpose. Closing this gap, we generated the SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA). It comprises ten spectral videos (∼20 Hz, approx. 20,000 frames each) systematically recorded of the hands of ten healthy human participants in different functional states. We paired each spectral video with concisely tracked regions of interest, and corresponding diffuse reflectance measurements recorded with a spectrometer. Providing the first openly accessible in human spectral video dataset for perfusion monitoring, our work facilitates the development and validation of new functional imaging methods.


Assuntos
Pele , Humanos , Pele/irrigação sanguínea , Pele/diagnóstico por imagem , Gravação em Vídeo , Mãos/irrigação sanguínea , Braço/irrigação sanguínea , Braço/diagnóstico por imagem
2.
JMIR Med Inform ; 10(1): e27743, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35049510

RESUMO

BACKGROUND: Although digital and data-based technologies are widespread in various industries in the context of Industry 4.0, the use of smart connected devices in health care is still in its infancy. Innovative solutions for the medical environment are affected by difficult access to medical device data and high barriers to market entry because of proprietary systems. OBJECTIVE: In the proof-of-concept project OP 4.1, we show the business viability of connecting and augmenting medical devices and data through software add-ons by giving companies a technical and commercial platform for the development, implementation, distribution, and billing of innovative software solutions. METHODS: The creation of a central platform prototype requires the collaboration of several independent market contenders, including medical users, software developers, medical device manufacturers, and platform providers. A dedicated consortium of clinical and scientific partners as well as industry partners was set up. RESULTS: We demonstrate the successful development of the prototype of a user-centric, open, and extensible platform for the intelligent support of processes starting with the operating room. By connecting heterogeneous data sources and medical devices from different manufacturers and making them accessible for software developers and medical users, the cloud-based platform OP 4.1 enables the augmentation of medical devices and procedures through software-based solutions. The platform also allows for the demand-oriented billing of apps and medical devices, thus permitting software-based solutions to fast-track their economic development and become commercially successful. CONCLUSIONS: The technology and business platform OP 4.1 creates a multisided market for the successful development, implementation, distribution, and billing of new software solutions in the operating room and in the health care sector in general. Consequently, software-based medical innovation can be translated into clinical routine quickly, efficiently, and cost-effectively, optimizing the treatment of patients through smartly assisted procedures.

3.
Sci Data ; 8(1): 101, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846356

RESUMO

Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.


Assuntos
Colo Sigmoide/cirurgia , Proctocolectomia Restauradora/instrumentação , Reto/cirurgia , Sistemas de Navegação Cirúrgica , Ciência de Dados , Humanos , Laparoscopia
4.
Med Image Anal ; 70: 101920, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676097

RESUMO

Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions. In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).


Assuntos
Processamento de Imagem Assistida por Computador , Laparoscopia , Algoritmos , Artefatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...