Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 104(5): 1018-1034, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598855

RESUMO

Systematic screening for BKPyV-DNAemia has been advocated to aid prevention and treatment of polyomavirus associated nephropathy (PyVAN), an important cause of kidney graft failure. The added value of performing a biopsy at time of BKPyV-DNAemia, to distinguish presumptive PyVAN (negative SV40 immunohistochemistry) and proven PyVAN (positive SV40) has not been established. Therefore, we studied an unselected cohort of 950 transplantations, performed between 2008-2017. BKPyV-DNAemia was detected in 250 (26.3%) transplant recipients, and positive SV40 in 91 cases (9.6%). Among 209 patients with a concurrent biopsy at time of first BKPyV-DNAemia, 60 (28.7%) biopsies were SV40 positive. Plasma viral load showed high diagnostic value for concurrent SV40 positivity (ROC-AUC 0.950, 95% confidence interval 0.916-0.978) and the semiquantitatively scored percentage of tubules with evidence of polyomavirus replication (pvl score) (0.979, 0.968-0.988). SV40 positivity was highly unlikely when plasma viral load is below 4 log10 copies/ml (negative predictive value 0.989, 0.979-0.994). In SV40 positive patients, higher plasma BKPyV-DNA load and higher pvl scores were associated with slower viral clearance from the blood (hazard ratio 0.712, 95% confidence interval 0.604-0.839, and 0.327, 0.161-0.668, respectively), whereas the dichotomy positivity/negativity of SV40 immunohistochemistry did not predict viral clearance. Although the pvl score offers some prognostic value for viral clearance on top of plasma viral load, the latter provided good guidance for when a biopsy was unnecessary to exclude PyVAN. Thus, the distinction between presumptive and proven PyVAN, based on SV40 immunohistochemistry, has limited clinical value. Hence, management of BKPyV-DNAemia and immunosuppression reduction should be weighed against the risk of occurrence of rejection, or exacerbation of rejection observed concomitantly.

2.
Sci Rep ; 13(1): 13534, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598256

RESUMO

BK polyomavirus (BKPyV) is a human DNA virus that resides latent in the host's renal tissue. Reactivation occurs occasionally and in case of kidney transplantation, it can lead to polyomavirus-associated nephropathy (PVAN). Due to the lack of specific antivirals for BKPyV and despite the risk of allograft rejection, reduction of immunosuppression remains the main approach for treating PVAN. Current data suggests that mutations can accumulate over time in the major capsid protein VP1 and can lead to neutralization escape in kidney transplant recipients. Herein, we show that mutations occur throughout the entire BKPyV genome, including in VP1. Changes were identified by per-patient comparison of viral genome sequences obtained in samples from 32 kidney recipients with persistent viremia collected at different post-transplant time-points. Amino acid changes were observed in both earlier and later post-transplant samples, although some of them were only found in later samples. Changes in VP1 mainly consisted in the introduction of a new amino acid. A switch back to the conservative amino acid was also observed. This should be considered in future approaches for treating BKPyV infection in kidney transplant recipients.


Assuntos
Vírus BK , Transplante de Rim , Polyomavirus , Humanos , Vírus BK/genética , Viremia , Transplante de Rim/efeitos adversos , Aminoácidos
3.
Viruses ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35891513

RESUMO

BK polyomavirus (BKPyV) is a human DNA virus generally divided into twelve subgroups based on the genetic diversity of Viral Protein 1 (VP1). BKPyV can cause polyomavirus-associated nephropathy (PVAN) after kidney transplantation. Detection of BKPyV DNA in blood (viremia) is a source of concern and increase in plasma viral load is associated with a higher risk of developing PVAN. In this work, we looked for possible associations of specific BKPyV genetic features with higher plasma viral load in kidney transplant patients. We analyzed BKPyV complete genome in three-month samples from kidney recipients who developed viremia during their follow-up period. BKPyV sequences were obtained by next-generation sequencing and were de novo assembled using the new BKAnaLite pipeline. Based on the data from 72 patients, we identified 24 viral groups with unique amino acid sequences: three in the VP1 subgroup IVc2, six in Ib1, ten in Ib2, one in Ia, and four in II. In none of the groups did the mean plasma viral load reach a statistically significant difference from the overall mean observed at three months after transplantation. Further investigation is needed to better understand the link between the newly described BKPyV genetic variants and pathogenicity in kidney transplant recipients.


Assuntos
Vírus BK , Nefropatias , Transplante de Rim , Infecções por Polyomavirus , Polyomavirus , Infecções Tumorais por Vírus , Vírus BK/genética , DNA Viral/genética , Variação Genética , Humanos , Transplante de Rim/efeitos adversos , Polyomavirus/genética , Transplantados , Viremia
4.
Viruses ; 12(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751885

RESUMO

Human BK polyomavirus (BKPyV) prevalence has been increasing due to the introduction of more potent immunosuppressive agents in transplant recipients, and its clinical interest. BKPyV has been linked mostly to polyomavirus-associated hemorrhagic cystitis, in allogenic hematopoietic stem cell transplant, and polyomavirus-associated nephropathy in kidney transplant patients. BKPyV is a circular double-stranded DNA virus that encodes for seven proteins, of which Viral Protein 1 (VP1), the major structural protein, has been extensively used for genotyping. BKPyV also contains the noncoding control region (NCCR), configured by five repeat blocks (OPQRS) known to be highly repetitive and diverse, and linked to viral infectivity and replication. BKPyV genetic diversity has been mainly studied based on the NCCR and VP1, due to the high occurrence of BKPyV-associated diseases in transplant patients and their clinical implications. Here BKTyper is presented, a free online genotyper for BKPyV, based on a VP1 genotyping and a novel algorithm for NCCR block identification. VP1 genotyping is based on a modified implementation of the BK typing and grouping regions (BKTGR) algorithm, providing a maximum-likelihood phylogenetic tree using a custom internal BKPyV database. Novel NCCR block identification relies on a minimum of 12-bp motif recognition and a novel sorting algorithm. A graphical representation of the OPQRS block organization is provided.


Assuntos
Vírus BK/classificação , Proteínas do Capsídeo/genética , Técnicas de Genotipagem , RNA não Traduzido/genética , Software , Algoritmos , Variação Genética , Filogenia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...