Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 43(12): 2251-2264, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36284460

RESUMO

Inherited retinal diseases (IRDs) comprise a phenotypically and genetically heterogeneous group of ocular disorders that cause visual loss via progressive retinal degeneration. Here, we report the genetic characterization of 1210 IRD pedigrees enrolled through the Japan Eye Genetic Consortium and analyzed by whole exome sequencing. The most common phenotype was retinitis pigmentosa (RP, 43%), followed by macular dystrophy/cone- or cone-rod dystrophy (MD/CORD, 13%). In total, 67 causal genes were identified in 37% (448/1210) of the pedigrees. The first and second most frequently mutated genes were EYS and RP1, associated primarily with autosomal recessive (ar) RP, and RP and arMD/CORD, respectively. Examinations of variant frequency in total and by phenotype showed high accountability of a frequent EYS missense variant (c.2528G>A). In addition to the two known EYS founder mutations (c.4957dupA and c.8805C>G) of arRP, we observed a frequent RP1 variant (c.5797C>T) in patients with arMD/CORD.


Assuntos
Distrofias de Cones e Bastonetes , Degeneração Macular , Doenças Retinianas , Humanos , Sequenciamento do Exoma , Proteínas do Olho/genética , População do Leste Asiático , Mutação , Linhagem , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Doenças Retinianas/genética , Degeneração Macular/genética , Análise Mutacional de DNA
2.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099048

RESUMO

Normal-tension glaucoma (NTG) is a heterogeneous disease characterized by retinal ganglion cell (RGC) death leading to cupping of the optic nerve head and visual field loss at normal intraocular pressure (IOP). The pathogenesis of NTG remains unclear. Here, we describe a single nucleotide mutation in exon 2 of the methyltransferase-like 23 (METTL23) gene identified in 3 generations of a Japanese family with NTG. This mutation caused METTL23 mRNA aberrant splicing, which abolished normal protein production and altered subcellular localization. Mettl23-knock-in (Mettl23+/G and Mettl23G/G) and -knockout (Mettl23+/- and Mettl23-/-) mice developed a glaucoma phenotype without elevated IOP. METTL23 is a histone arginine methyltransferase expressed in murine and macaque RGCs. However, the novel mutation reduced METTL23 expression in RGCs of Mettl23G/G mice, which recapitulated both clinical and biological phenotypes. Moreover, our findings demonstrated that METTL23 catalyzed the dimethylation of H3R17 in the retina and was required for the transcription of pS2, an estrogen receptor α target gene that was critical for RGC homeostasis through the negative regulation of NF-κB-mediated TNF-α and IL-1ß feedback. These findings suggest an etiologic role of METTL23 in NTG with tissue-specific pathology.


Assuntos
Glaucoma , Histonas , Animais , Camundongos , Modelos Animais de Doenças , Glaucoma/metabolismo , Histonas/genética , Histonas/metabolismo , Pressão Intraocular/genética , Metilação , Mutação , Células Ganglionares da Retina/metabolismo
3.
J Invest Dermatol ; 135(11): 2584-2592, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26076315

RESUMO

The atypical protein kinase C (aPKC)-partition-defective (PAR) complex regulates the formation of tight junctions and apico-basal epithelial polarity. To examine the role of this complex in the epidermis, we generated mutant mice harboring epidermal-specific deletion of aPKCλ (conditional knock-out (cKO)), a major component of the aPKC-PAR complex. The mutant mice exhibited abnormal hair follicle (HF) cycling, progressive losses of pelage hairs and vibrissae, and altered differentiation into the epidermis and sebaceous gland. We found that in the aPKCλ cKO mice HF stem cell (HFSC) quiescence was lost, as revealed by the decreased expression level of quiescence-inducing factors (Fgf18 and Bmp6) produced in Keratin 6-positive bulge stem cells. The loss of quiescence dysregulated the HFSC marker expression and led to the increase in Lrig1-positive cells, inducing hyperplasia of the interfollicular epidermis and sebaceous glands, and drove an increase in Lef1-positive matrix cells, causing a prolonged anagen-like phase. Persistent bulge stem cell activation led to a gradual depletion of CD34- and α6 integrin-positive HFSC reservoirs. These results suggest that aPKCλ regulates signaling pathways implicated in HFSC quiescence.


Assuntos
Folículo Piloso/citologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Células Epidérmicas , Epiderme/metabolismo , Deleção de Genes , Marcadores Genéticos , Folículo Piloso/patologia , Imuno-Histoquímica , Injeções Intraperitoneais , Camundongos , Camundongos Knockout , Isoformas de Proteínas/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...