Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2315930120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147558

RESUMO

Red blood cell (RBC) metabolic reprogramming upon exposure to high altitude contributes to physiological human adaptations to hypoxia, a multifaceted process critical to health and disease. To delve into the molecular underpinnings of this phenomenon, first, we performed a multi-omics analysis of RBCs from six lowlanders after exposure to high-altitude hypoxia, with longitudinal sampling at baseline, upon ascent to 5,100 m and descent to sea level. Results highlighted an association between erythrocyte levels of 2,3-bisphosphoglycerate (BPG), an allosteric regulator of hemoglobin that favors oxygen off-loading in the face of hypoxia, and expression levels of the Rhesus blood group RHCE protein. We then expanded on these findings by measuring BPG in RBCs from 13,091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. These data informed a genome-wide association study using BPG levels as a quantitative trait, which identified genetic polymorphisms in the region coding for the Rhesus blood group RHCE as critical determinants of BPG levels in erythrocytes from healthy human volunteers. Mechanistically, we suggest that the Rh group complex, which participates in the exchange of ammonium with the extracellular compartment, may contribute to intracellular alkalinization, thus favoring BPG mutase activity.


Assuntos
Altitude , Antígenos de Grupos Sanguíneos , Hipóxia , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , 2,3-Difosfoglicerato/metabolismo , Eritrócitos/metabolismo , Estudo de Associação Genômica Ampla , Hipóxia/genética , Hipóxia/metabolismo , Polimorfismo Genético , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo
2.
Am J Hematol ; 98(12): 1877-1887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671681

RESUMO

Adenosine Triphosphatase (ATPase) Phospholipid Transporting 11C gene (ATP11C) encodes the major phosphatidylserine (PS) flippase in human red blood cells (RBCs). Flippases actively transport phospholipids (e.g., PS) from the outer to the inner leaflet to establish and maintain phospholipid asymmetry of the lipid bilayer of cell membranes. This asymmetry is crucial for survival since externalized PS triggers phagocytosis by splenic macrophages. Here we report on pathophysiological consequences of decreased flippase activity, prompted by a patient with hemolytic anemia and hemizygosity for a novel c.2365C > T p.(Leu789Phe) missense variant in ATP11C. ATP11C protein expression was strongly reduced by 58% in patient-derived RBC ghosts. Furthermore, functional characterization showed only 26% PS flippase activity. These results were confirmed by recombinant mutant ATP11C protein expression in HEK293T cells, which was decreased to 27% compared to wild type, whereas PS-stimulated ATPase activity was decreased by 57%. Patient RBCs showed a mild increase in PS surface exposure when compared to control RBCs, which further increased in the most dense RBCs after RBC storage stress. The increase in PS was not due to higher global membrane content of PS or other phospholipids. In contrast, membrane lipid lateral distribution showed increased abundance of cholesterol-enriched domains in RBC low curvature areas. Finally, more dense RBCs and subtle changes in RBC morphology under flow hint toward alterations in flow behavior of ATP11C-deficient RBCs. Altogether, ATP11C deficiency is the likely cause of hemolytic anemia in our patient, thereby underlining the physiological role and relevance of this flippase in human RBCs.


Assuntos
Anemia Hemolítica Congênita , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Células HEK293 , Eritrócitos/metabolismo , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
4.
Redox Biol ; 58: 102535, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36413919

RESUMO

Fast changes in environmental oxygen availability translate into shifts in mitochondrial free radical production. An increase in intraerythrocytic reduced glutathione (GSH) during deoxygenation would support the detoxification of exogenous oxidants released into the circulation from hypoxic peripheral tissues. Although reported, the mechanism behind this acute oxygen-dependent regulation of GSH in red blood cells remains unknown. This study explores the role of hemoglobin (Hb) in the oxygen-dependent modulation of GSH levels in red blood cells. We have demonstrated that a decrease in Hb O2 saturation to 50% or less observed in healthy humans while at high altitude, or in red blood cell suspensions results in rising of the intraerythrocytic GSH level that is proportional to the reduction in Hb O2 saturation. This effect was not caused by the stimulation of GSH de novo synthesis or its release during deglutathionylation of Hb's cysteines. Using isothermal titration calorimetry and in silico modeling, we observed the non-covalent binding of four molecules of GSH to oxy-Hb and the release of two of them upon deoxygenation. Localization of the GSH binding sites within the Hb molecule was identified. Oxygen-dependent binding of GSH to oxy-Hb and its release upon deoxygenation occurred reciprocally to the binding and release of 2,3-bisphosphoglycerate. Furthermore, noncovalent binding of GSH to Hb moderately increased Hb oxygen affinity. Taken together, our findings have identified an adaptive mechanism by which red blood cells may provide an advanced antioxidant defense to respond to oxidative challenges immediately upon deoxygenation.


Assuntos
Glutationa , Oxigênio , Humanos , Oxigênio/metabolismo , Glutationa/metabolismo , Hemoglobinas/metabolismo , Eritrócitos/metabolismo , Oxiemoglobinas/metabolismo
6.
Cells ; 11(8)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35455975

RESUMO

(1) Background: When red blood cells are centrifuged in a continuous Percoll-based density gradient, they form discrete bands. While this is a popular approach for red blood cell age separation, the mechanisms involved in banding were unknown. (2) Methods: Percoll centrifugations of red blood cells were performed under various experimental conditions and the resulting distributions analyzed. The age of the red blood cells was measured by determining the protein band 4.1a to 4.1b ratio based on western blots. Red blood cell aggregates, so-called rouleaux, were monitored microscopically. A mathematical model for the centrifugation process was developed. (3) Results: The red blood cell band pattern is reproducible but re-centrifugation of sub-bands reveals a new set of bands. This is caused by red blood cell aggregation. Based on the aggregation, our mathematical model predicts the band formation. Suppression of red blood cell aggregation reduces the band formation. (4) Conclusions: The red blood cell band formation in continuous Percoll density gradients could be explained physically by red blood cell aggregate formation. This aggregate formation distorts the density-based red blood cell age separation. Suppressing aggregation by osmotic swelling has a more severe effect on compromising the RBC age separation to a higher degree.


Assuntos
Eritrócitos , Povidona , Separação Celular/métodos , Centrifugação com Gradiente de Concentração , Dióxido de Silício
7.
Cells ; 11(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406648

RESUMO

Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis.


Assuntos
Eritropoese , Eritropoetina , Aclimatação , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Humanos , Hipóxia , Oxigênio/metabolismo
8.
Front Physiol ; 13: 1113951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714320
12.
Acta Physiol (Oxf) ; 232(3): e13647, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33729672

RESUMO

AIMS: Total haemoglobin mass (tot-Hb) increases during high-altitude acclimatization. Normalization of tot-Hb upon descent is thought to occur via neocytolysis, the selective destruction of newly formed erythrocytes. Because convincing experimental proof of neocytolysis is lacking, we performed a prospective study on erythrocyte survival after a stay at the Jungfraujoch Research Station (JFJRS; 3450 m). METHODS: Newly formed erythrocytes of 12 male subjects (mean age 23.3 years) were age cohort labelled in normoxia (110 m) and during a 19-day high-altitude sojourn by ingestion of 13 C2- and 15 N-labelled glycine respectively. Elimination dynamics for erythrocytes produced in normoxia and at high altitude were measured by isotope ratio mass spectrometry of haem, by determining tot-Hb, reticulocyte counts, erythrocyte membrane protein 4.1a/4.1b ratio and by mathematical modelling. RESULTS: Tot-Hb increased by 4.7% ± 2.7% at high altitude and returned to pre-altitude values within 11 days after descent. Elimination of 13 C- (normoxia) and 15 N- (high altitude) labelled erythrocytes was not different. Erythropoietin levels and counts of CD71-positive reticulocytes decreased rapidly after descent. The band 4.1a/4.1b ratio decreased at altitude and remained low for 3-4 days after descent and normalized slowly. There was no indication of haemolysis. CONCLUSION: We confirm a rapid normalization of tot-Hb upon descent. Based on the lack of accelerated removal of age cohorts of erythrocytes labelled at high altitude, on patterns of changes in reticulocyte counts and of the band 4.1a/4.1b ratio and on modelling, this decrease did not occur via neocytolysis, but by a reduced rate of erythropoiesis along with normal clearance of senescent erythrocytes.


Assuntos
Altitude , Eritropoetina , Adulto , Eritrócitos , Humanos , Masculino , Estudos Prospectivos , Reticulócitos , Adulto Jovem
13.
Med Hypotheses ; 144: 110128, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758903

RESUMO

It has been proposed that a degraded immune system is (one of) the condition(s) that predispose certain subjects to fatal consequences from infection by SARS-CoV-2. It is unknown whether therapeutic regimens to which these patients may have been subjected to in the months/years preceding the infection could be immunocompromising. Statins are among the most widely prescribed cholesterol-lowering drugs. As competitive inhibitors of HMG-CoA-reductase, the key enzyme of the "mevalonate pathway" through which essential compounds, not only cholesterol, are synthesized, statins decrease the levels of cholesterol, and thus LDLs, as an innate defense mechanism, with controversial results in decreasing mortality from cardiovascular disease. Moreover, statins have pleiotropic, mostly deleterious effects on many cell types, including immune cells. In the attempt to decipher the enigma of SARS-CoV-2 infectivology, the hypothesis should be tested whether the population of subjects who succumbed to Covid-19 may have developed a compromised immunity at sub-clinical levels and have become more susceptible to fatal consequences from SARS-Cov-2 infection due to statin therapy.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Ácido Mevalônico/química , Oxirredução , Selenoproteínas/química , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sistema Imunitário , Imunidade Inata , Inflamação , Lipoproteínas LDL/metabolismo , Modelos Teóricos , Estresse Oxidativo
14.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118799, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693110

RESUMO

Neutrophils are first responders in infection and inflammation. They are able to roll, adhere and transmigrate through the endothelium to reach the site of infection, where they fight pathogens through secretion of granule contents, production of reactive oxygen species, extrusion of neutrophil extracellular traps, and phagocytosis. In this study we explored the role of the non-receptor focal adhesion kinase Pyk2 in neutrophil adhesion and activation. Using a specific Pyk2 pharmacological inhibitor, PF-4594755, as well as Pyk2-deficient murine neutrophils, we found that Pyk2 is activated upon integrin αMß2-mediated neutrophil adhesion to fibrinogen. This process is triggered by Src family kinases-mediated phosphorylation and supported by Pyk2 autophosphorylation on Y402. In neutrophil adherent to fibrinogen, Pyk2 activates PI3K-dependent pathways promoting the phosphorylation of Akt and of its downstream effector GSK3. Pyk2 also dynamically regulates MAP kinases in fibrinogen-adherent neutrophils, as it stimulates p38MAPK but negatively regulates ERK1/2. Pharmacological inhibition of Pyk2 significantly prevented adhesion of human neutrophils to fibrinogen, and neutrophils from Pyk2-knockout mice showed a reduced ability to adhere compared to wildtype cells. Accordingly, neutrophil adhesion to fibrinogen was reduced upon inhibition of p38MAPK but potentiated by ERK1/2 inhibition. Neutrophil adherent to fibrinogen, but not to polylysine, were able to produce ROS upon lipopolysaccharide challenge and ROS production was completely suppressed upon inhibition of Pyk2. By contrast PMA-induced ROS production by neutrophil adherent to either fibrinogen or polylysine was independent from Pyk2. Altogether these results demonstrate that Pyk2 is an important effector in the coordinated puzzle regulating neutrophil adhesion and activation.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Antígeno de Macrófago 1/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fibrinogênio/farmacologia , Humanos , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo
15.
Front Physiol ; 11: 215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256383

RESUMO

Red blood cells (RBCs) begin their circulatory life as reticulocytes (Retics) after their egress from the bone marrow where, as R1 Retics, they undergo significant rearrangements in their membrane and intracellular components, via autophagic, proteolytic, and vesicle-based mechanisms. Circulating, R2 Retics must complete this maturational process, which involves additional loss of significant amounts of membrane and selected membrane proteins. Little is known about the mechanism(s) at the basis of this terminal differentiation in the circulation, which culminates with the production of a stable biconcave discocyte. The membrane of R1 Retics undergoes a selective remodeling through the release of exosomes that are enriched in transferrin receptor and membrane raft proteins and lipids, but are devoid of Band 3, glycophorin A, and membrane skeletal proteins. We wondered whether a similar selective remodeling occurred also in the maturation of R2 Retics. Peripheral blood R2 Retics, isolated by an immunomagnetic method, were compared with mature circulating RBCs from the same donor and their membrane protein and lipid content was analyzed. Results show that both Band 3 and spectrin decrease from R2 Retics to RBCs on a "per cell" basis. Looking at membrane proteins that are considered as markers of membrane rafts, flotillin-2 appears to decrease in a disproportionate manner with respect to Band 3. Stomatin also decreases but in a more proportionate manner with respect to Band 3, hinting at a heterogeneous nature of membrane rafts. High resolution lipidomics analysis, on the contrary, revealed that those lipids that are typically representative of the membrane raft phase, sphingomyelin and cholesterol, are enriched in mature RBCs with respct to Retics, relative to total cell lipids, strongly arguing in favor of the selective retention of at least certain subclasses of membrane rafts in RBCs as they mature from Retics. Our hypothesis that rafts serve as additional anchoring sites for the lipid bilayer to the underlying membrane-skeleton is corroborated by the present results. It is becoming ever more clear that a proper lipid composition of the reticulocyte is necessary for the production of a normal mature RBC.

16.
Front Physiol ; 10: 514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139090

RESUMO

Glutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape, conservation of these shapes for imaging in general and 3D-imaging in particular, like confocal microscopy, scanning electron microscopy or scanning probe microscopy is a common desire. Along with the fixation comes an increase in the stiffness of the cells. In the context of red blood cells this increased rigidity is often used to mimic malaria infected red blood cells because they are also stiffer than healthy red blood cells. However, the use of glutaraldehyde is associated with numerous pitfalls: (i) while the increase in rigidity by an application of increasing concentrations of glutaraldehyde is an analog process, the fixation is a rather digital event (all or none); (ii) addition of glutaraldehyde massively changes osmolality in a concentration dependent manner and hence cell shapes can be distorted; (iii) glutaraldehyde batches differ in their properties especially in the ratio of monomers and polymers; (iv) handling pitfalls, like inducing shear artifacts of red blood cell shapes or cell density changes that needs to be considered, e.g., when working with cells in flow; (v) staining glutaraldehyde treated red blood cells need different approaches compared to living cells, for instance, because glutaraldehyde itself induces a strong fluorescence. Within this paper we provide documentation about the subtle use of glutaraldehyde on healthy and pathologic red blood cells and how to deal with or circumvent pitfalls.

17.
Perspect Public Health ; 138(4): 223-226, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29809098

RESUMO

The clinical diagnosis of Alzheimer's disease (AD) is based primarily on neuropsychological tests, which assess the involutive damage, and imaging techniques that evaluate morphologic changes in the brain. Currently available diagnostic tests do not show complete specificity and do not permit accurate differentiation between AD and other forms of senile dementia. The correlation of these tests with laboratory investigations based on biochemical parameters could increase the certainty of diagnosis. In recent years, several biochemical markers for the diagnosis of AD have been proposed, but in most cases they show a limited specificity and their application is invasive, requiring, in general, sampling of cerebrospinal fluid. Thus, the use of a peripheral biochemical marker could represent a valuable complement for the diagnosis of this disease. Several studies have shown a relationship between neurodegenerative disorders typical of the ageing process, weakening of the immune system and alterations in the levels of selenium and of the antioxidant selenoenzymes in brain tissues and blood cells. Among blood cells, neutrophil granulocytes uniquely express the selenoenzyme methionine sulfoxide reductase B1 (MsrB1). In a preliminary analysis carried out on neutrophils from subjects affected by AD, we observed a significant decline in MsrB1 activity compared to normal subjects. Therefore, we deem it of particular interest to explore the potential use of MsrB1 as a selective peripheral marker for the diagnosis of AD.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Metionina Sulfóxido Redutases/sangue , Encéfalo , Humanos , Sistema Imunitário , Neutrófilos , Projetos Piloto , Selênio
18.
Front Physiol ; 9: 286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632498

RESUMO

Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs) in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR), to the multivesicular endosome (MVE) as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978). According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s) must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life.

20.
Cell Physiol Biochem ; 42(3): 1139-1152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668958

RESUMO

BACKGROUND: Old human red blood cells (RBCs) have a reduced surface area with respect to young RBCs. If this decrease occurred through the release of vesicles similar to the spectrin-free vesicles that are shed in vitro under different experimental conditions or during storage, there would be no decrease of membrane-skeleton, but only of lipid bilayer surface area, during RBC ageing in vivo. However, we observed a decrease in spectrin and other membrane-skeletal proteins in old RBCs. Because RBCs contain components of the ubiquitin-proteasome system and other hydrolytic systems for protein degradation, we asked whether increased membrane-skeleton fragments could be detected in older RBCs. METHODS: Four different anti-spectrin antibodies and an antibody anti-ubiquitin conjugates were used to analyse, by Western blotting, fragments of spectrin and other proteins in RBCs of different age separated in density gradients and characterized for their protein 4.1a/4.1b ratio as a cell age parameter. RESULTS: spectrin fragments do exist in RBCs of all ages, they represent a minute fraction of all spectrin, are membrane-bound and not cytoplasmic and do not increase with cell age. Besides spectrin, other membrane-skeletal components decrease with cell age. CONCLUSION: Observed results challenge the commonly accepted view that decrease in cell membrane throughout RBC life in vivo occurs via the release of spectrin-free vesicles.


Assuntos
Senescência Celular , Eritrócitos/citologia , Espectrina/análise , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Exossomos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Multimerização Proteica , Espectrina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...