Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7501, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980346

RESUMO

Panicle architecture is a key determinant of rice grain yield and is mainly determined at the 1-2 mm young panicle stage. Here, we investigated the transcriptome of the 1-2 mm young panicles from 275 rice varieties and identified thousands of genes whose expression levels were associated with panicle traits. Multimodel association studies suggested that many small-effect genetic loci determine spikelet per panicle (SPP) by regulating the expression of genes associated with panicle traits. We found that alleles at cis-expression quantitative trait loci of SPP-associated genes underwent positive selection, with a strong preference for alleles increasing SPP. We further developed a method that integrates the associations of cis- and trans-expression components of genes with traits to identify causal genes at even small-effect loci and construct regulatory networks. We identified 36 putative causal genes of SPP, including SDT (MIR156j) and OsMADS17, and inferred that OsMADS17 regulates SDT expression, which was experimentally validated. Our study reveals the impact of regulatory variants on rice panicle architecture and provides new insights into the gene regulatory networks of panicle traits.


Assuntos
Oryza , Transcriptoma , Transcriptoma/genética , Oryza/genética , Oryza/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Locos de Características Quantitativas/genética
2.
Mol Plant ; 14(9): 1584-1599, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34214659

RESUMO

Interpreting the functional impacts of genetic variants (GVs) is an important challenge for functional genomic studies in crops and next-generation breeding. Previous studies in rice (Oryza sativa) have focused mainly on the identification of GVs, whereas systematic functional annotation of GVs has not yet been performed. Here, we present a functional impact map of GVs in rice. We curated haplotype information for 17 397 026 GVs from sequencing data of 4726 rice accessions. We quantitatively evaluated the effects of missense mutations in coding regions in each haplotype based on the conservation of amino acid residues and obtained the effects of 918 848 non-redundant missense GVs. Furthermore, we generated high-quality chromatin accessibility (CA) data from six representative rice tissues and used these data to train deep convolutional neural network models to predict the impacts of 5 067 405 GVs for CA in regulatory regions. We characterized the functional properties and tissue specificity of the GV effects and found that large-effect GVs in coding and regulatory regions may be subject to selection in different directions. Finally, we demonstrated how the functional impact map could be used to prioritize causal variants in mapping populations. This impact map will be a useful resource for accelerating gene cloning and functional studies in rice, and can be freely queried in RiceVarMap V2.0 (http://ricevarmap.ncpgr.cn).


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Genoma de Planta , Oryza/genética , Genótipo , Haplótipos , Mutação INDEL , Polimorfismo de Nucleotídeo Único
3.
Mol Plant ; 14(7): 1168-1184, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933648

RESUMO

Reproductive transition of grasses is characterized by switching the pattern of lateral branches, featuring the suppression of outgrowth of the subtending leaves (bracts) and rapid formation of higher-order branches in the inflorescence (panicle). However, the molecular mechanisms underlying such changes remain largely unknown. Here, we show that bract suppression is required for the reproductive branching in rice. We identified a pathway involving the intrinsic time ruler microRNA156/529, their targets SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, NECK LEAF1 (NL1), and PLASTOCHRON1 (PLA1), which regulates the bract outgrowth and thus affects the pattern switch between vegetative and reproductive branching. Suppression of the bract results in global reprogramming of transcriptome and chromatin accessibility following the reproductive transition, while these processes are largely dysregulated in the mutants of these genes. These discoveries contribute to our understanding of the dynamic plant architecture and provide novel insights for improving crop yields.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/fisiologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , RNA de Plantas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genes de Plantas , Oryza/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Dedos de Zinco
4.
Plant Cell ; 30(11): 2720-2740, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30373760

RESUMO

Rice (Oryza sativa) is an important dietary source of both essential micronutrients and toxic trace elements for humans. The genetic basis underlying the variations in the mineral composition, the ionome, in rice remains largely unknown. Here, we describe a comprehensive study of the genetic architecture of the variation in the rice ionome performed using genome-wide association studies (GWAS) of the concentrations of 17 mineral elements in rice grain from a diverse panel of 529 accessions, each genotyped at ∼6.4 million single nucleotide polymorphism loci. We identified 72 loci associated with natural ionomic variations, 32 that are common across locations and 40 that are common within a single location. We identified candidate genes for 42 loci and provide evidence for the causal nature of three genes, the sodium transporter gene Os-HKT1;5 for sodium, Os-MOLYBDATE TRANSPORTER1;1 for molybdenum, and Grain number, plant height, and heading date7 for nitrogen. Comparison of GWAS data from rice versus Arabidopsis (Arabidopsis thaliana) also identified well-known as well as new candidates with potential for further characterization. Our study provides crucial insights into the genetic basis of ionomic variations in rice and serves as an important foundation for further studies on the genetic and molecular mechanisms controlling the rice ionome.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Oryza/genética , Variação Genética/genética , Genótipo , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
5.
Front Plant Sci ; 9: 612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868069

RESUMO

Rice seed storage protein (SSP) is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb), globulin (Glo), prolamin (Pro), glutelin (Glu), and total SSP (Total). A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97) and NIL(Delong208), and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs) were located less than 20 kb upstream from grain-quality-related genes (PG5a, Wx, AGPS2a, RP6, and, RM1). Several starch-metabolism-related genes (AGPS2a, OsACS6, PUL, GBSSII, and ISA2) were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6, RM1, Wx, and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would provide new insights into the genetic basis of SSP content that will help in developing rice cultivars with improved grain nutritional quality through marker-assisted breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...