Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 17: 1135153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305362

RESUMO

This paper presents the first garment capable of measuring brain activity with accuracy comparable to that of state-of-the art dry electroencephalogram (EEG) systems. The main innovation is an EEG sensor layer (i.e., the electrodes, the signal transmission, and the cap support) made entirely of threads, fabrics, and smart textiles, eliminating the need for metal or plastic materials. The garment is connected to a mobile EEG amplifier to complete the measurement system. As a first proof of concept, the new EEG system (Garment-EEG) was characterized with respect to a state-of-the-art Ag/AgCl dry-EEG system (Dry-EEG) over the forehead area of healthy participants in terms of: (1) skin-electrode impedance; (2) EEG activity; (3) artifacts; and (4) user ergonomics and comfort. The results show that the Garment-EEG system provides comparable recordings to Dry-EEG, but it is more susceptible to artifacts under adverse recording conditions due to poorer contact impedances. The textile-based sensor layer offers superior ergonomics and comfort compared to its metal-based counterpart. We provide the datasets recorded with Garment-EEG and Dry-EEG systems, making available the first open-access dataset of an EEG sensor layer built exclusively with textile materials. Achieving user acceptance is an obstacle in the field of neurotechnology. The introduction of EEG systems encapsulated in wearables has the potential to democratize neurotechnology and non-invasive brain-computer interfaces, as they are naturally accepted by people in their daily lives. Furthermore, supporting the EEG implementation in the textile industry may result in lower cost and less-polluting manufacturing processes compared to metal and plastic industries.

2.
Brain ; 143(6): 1674-1685, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176800

RESUMO

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Assuntos
Lista de Checagem/métodos , Neurorretroalimentação/métodos , Adulto , Consenso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Revisão da Pesquisa por Pares , Projetos de Pesquisa/normas , Participação dos Interessados
3.
Clin EEG Neurosci ; : 1550059418792153, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30084262

RESUMO

Chronic spinal cord injury (SCI) patients present poor motor cortex activation during movement attempts. The reactivation of this brain region can be beneficial for them, for instance, allowing them to use brain-machine interfaces for motor rehabilitation or restoration. These brain-machine interfacess generally use electroencephalography (EEG) to measure the cortical activation during the attempts of movement, quantifying it as the event-related desynchronization (ERD) of the alpha/mu rhythm. Based on previous evidence showing that higher tonic EEG alpha power is associated with higher ERD, we hypothesized that artificially increasing the alpha power over the motor cortex of these patients could enhance their ERD (ie, motor cortical activation) during movement attempts. We used EEG neurofeedback (NF) to enhance the tonic EEG alpha power, providing real-time visual feedback of the alpha oscillations measured over the motor cortex. This approach was evaluated in a C4, ASIA A, SCI patient (9 months after the injury) who did not present ERD during the movement attempts of his paralyzed hands. The patient performed 4 NF sessions (in 4 consecutive days) and screenings of his EEG activity before and after each session. After the intervention, the patient presented a significant increase in the alpha power over the motor cortex, and a significant enhancement of the mu ERD in the contralateral motor cortex when he attempted to close the assessed right hand. As a proof of concept investigation, this article shows how a short NF intervention might be used to enhance the motor cortical activation in patients with chronic tetraplegia.

4.
J Neural Eng ; 14(3): 036004, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28291737

RESUMO

OBJECTIVE: One use of EEG-based brain-computer interfaces (BCIs) in rehabilitation is the detection of movement intention. In this paper we investigate for the first time the instantaneous phase of movement related cortical potential (MRCP) and its application to the detection of gait intention. APPROACH: We demonstrate the utility of MRCP phase in two independent datasets, in which 10 healthy subjects and 9 chronic stroke patients executed a self-initiated gait task in three sessions. Phase features were compared to more conventional amplitude and power features. MAIN RESULTS: The neurophysiology analysis showed that phase features have higher signal-to-noise ratio than the other features. Also, BCI detectors of gait intention based on phase, amplitude, and their combination were evaluated under three conditions: session-specific calibration, intersession transfer, and intersubject transfer. Results show that the phase based detector is the most accurate for session-specific calibration (movement intention was correctly detected in 66.5% of trials in healthy subjects, and in 63.3% in stroke patients). However, in intersession and intersubject transfer, the detector that combines amplitude and phase features is the most accurate one and the only that retains its accuracy (62.5% in healthy subjects and 59% in stroke patients) w.r.t. session-specific calibration. SIGNIFICANCE: MRCP phase features improve the detection of gait intention and could be used in practice to remove time-consuming BCI recalibration.


Assuntos
Interfaces Cérebro-Computador , Sincronização Cortical , Eletroencefalografia/métodos , Transtornos Neurológicos da Marcha/fisiopatologia , Marcha , Intenção , Acidente Vascular Cerebral/fisiopatologia , Adulto , Algoritmos , Feminino , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão/métodos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico
5.
IEEE Trans Biomed Eng ; 64(1): 99-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27046866

RESUMO

GOAL: Stroke survivors usually require motor rehabilitation therapy as, due to the lesion, they completely or partially loss mobility in the limbs. Brain-computer interface technology offers the possibility of decoding the attempt to move paretic limbs in real time to improve existing motor rehabilitation. However, a major difficulty for the practical application of the BCI to stroke survivors is that the brain rhythms that encode the motor states might be diminished due to the lesion. This study investigates the continuous decoding of natural attempt to move the paralyzed upper limb in stroke survivors from electroencephalographic signals of the unaffected contralesional motor cortex. RESULTS: Experiments were carried out with the aid of six severely affected chronic stroke patients performing/attempting self-selected reaching movements of the unaffected/affected upper limb. The electroencephalographic (EEG) analysis showed significant cortical activation on the uninjured motor cortex when moving the contralateral unaffected arm and in the attempt to move the ipsilateral affected arm. Using this activity, significant continuous decoding of movement was obtained in six out of six participants in movements of the unaffected limb, and in four out of six participants in the attempt to move the affected limb. CONCLUSION: This study showed that it is possible to construct a decoder of the attempt to move the paretic arm for chronic stroke patients using the EEG activity of the healthy contralesional motor cortex. SIGNIFICANCE: This decoding model could provide to stroke survivors with a natural, easy, and intuitive way to achieve control of BCIs or robot-assisted rehabilitation devices.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Córtex Motor/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Movimento , Acidente Vascular Cerebral/fisiopatologia , Adulto , Algoritmos , Braço , Doença Crônica , Feminino , Humanos , Imaginação , Intenção , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/etiologia , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico
6.
Front Neurosci ; 10: 359, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536214

RESUMO

The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton-without any weight or balance support-for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).

7.
J Neural Eng ; 13(1): 016018, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26735705

RESUMO

OBJECTIVE: Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. APPROACH: A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement-from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. MAIN RESULTS: EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. SIGNIFICANCE: This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.


Assuntos
Atenção/fisiologia , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Cinestesia/fisiologia , Perna (Membro)/fisiologia , Movimento/fisiologia , Adulto , Algoritmos , Feminino , Humanos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
8.
J Neuroeng Rehabil ; 12: 113, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26654594

RESUMO

BACKGROUND: Most studies in the field of brain-computer interfacing (BCI) for lower limbs rehabilitation are carried out with healthy subjects, even though insights gained from healthy populations may not generalize to patients in need of a BCI. METHODS: We investigate the ability of a BCI to detect the intention to walk in stroke patients from pre-movement EEG correlates. Moreover, we also investigated how the motivation of the patients to execute a task related to the rehabilitation therapy affects the BCI accuracy. Nine chronic stroke patients performed a self-initiated walking task during three sessions, with an intersession interval of one week. RESULTS: Using a decoder that combines temporal and spectral sparse classifiers we detected pre-movement state with an accuracy of 64 % in a range between 18 % and 85.2 %, with the chance level at 4 %. Furthermore, we found a significantly strong positive correlation (r = 0.561, p = 0.048) between the motivation of the patients to perform the rehabilitation related task and the accuracy of the BCI detector of their intention to walk. CONCLUSIONS: We show that a detector based on temporal and spectral features can be used to classify pre-movement state in stroke patients. Additionally, we found that patients' motivation to perform the task showed a strong correlation to the attained detection rate of their walking intention.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Intenção , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Motivação/fisiologia , Acidente Vascular Cerebral/psicologia , Caminhada/fisiologia , Caminhada/psicologia
9.
Sci Rep ; 5: 13893, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26354145

RESUMO

Brain-machine interfaces (BMI) usually decode movement parameters from cortical activity to control neuroprostheses. This requires subjects to learn to modulate their brain activity to convey all necessary information, thus imposing natural limits on the complexity of tasks that can be performed. Here we demonstrate an alternative and complementary BMI paradigm that overcomes that limitation by decoding cognitive brain signals associated with monitoring processes relevant for achieving goals. In our approach the neuroprosthesis executes actions that the subject evaluates as erroneous or correct, and exploits the brain correlates of this assessment to learn suitable motor behaviours. Results show that, after a short user's training period, this teaching BMI paradigm operated three different neuroprostheses and generalized across several targets. Our results further support that these error-related signals reflect a task-independent monitoring mechanism in the brain, making this teaching paradigm scalable. We anticipate this BMI approach to become a key component of any neuroprosthesis that mimics natural motor control as it enables continuous adaptation in the absence of explicit information about goals. Furthermore, our paradigm can seamlessly incorporate other cognitive signals and conventional neuroprosthetic approaches, invasive or non-invasive, to enlarge the range and complexity of tasks that can be accomplished.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Aprendizagem , Masculino , Movimento , Desempenho Psicomotor , Adulto Jovem
10.
PLoS One ; 10(7): e0131759, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26177457

RESUMO

Spinal cord injury (SCI) does not only produce a lack of sensory and motor function caudal to the level of injury, but it also leads to a progressive brain reorganization. Chronic SCI patients attempting to move their affected limbs present a significant reduction of brain activation in the motor cortex, which has been linked to the deafferentation. The aim of this work is to study the evolution of the motor-related brain activity during the first months after SCI. Eighteen subacute SCI patients were recruited to participate in bi-weekly experimental sessions during at least two months. Their EEG was recorded to analyze the temporal evolution of the event-related desynchronization (ERD) over the motor cortex, both during motor attempt and motor imagery of their paralyzed hands. The results show that the α and ß ERD evolution after SCI is negatively correlated with the clinical progression of the patients during the first months after the injury. This work provides the first longitudinal study of the event-related desynchronization during the subacute phase of spinal cord injury. Furthermore, our findings reveal a strong association between the ERD changes and the clinical evolution of the patients. These results help to better understand the brain transformation after SCI, which is important to characterize the neuroplasticity mechanisms involved after this lesion and may lead to new strategies for rehabilitation and motor restoration of these patients.


Assuntos
Eletroencefalografia , Córtex Motor/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Adolescente , Adulto , Idoso , Sincronização de Fases em Eletroencefalografia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
J Neural Eng ; 12(5): 056001, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26193332

RESUMO

Human studies on cognitive control processes rely on tasks involving sudden-onset stimuli, which allow the analysis of these neural imprints to be time-locked and relative to the stimuli onset. Human perceptual decisions, however, comprise continuous processes where evidence accumulates until reaching a boundary. Surpassing the boundary leads to a decision where measured brain responses are associated to an internal, unknown onset. The lack of this onset for gradual stimuli hinders both the analyses of brain activity and the training of detectors. This paper studies electroencephalographic (EEG)-measurable signatures of human processing for sudden and gradual cognitive processes represented as a trajectory mismatch under a monitoring task. Time-locked potentials and brain-source analysis of the EEG of sudden mismatches revealed the typical components of event-related potentials and the involvement of brain structures related to cognitive control processing. For gradual mismatch events, time-locked analyses did not show any discernible EEG scalp pattern, despite related brain areas being, to a lesser extent, activated. However, and thanks to the use of non-linear pattern recognition algorithms, it is possible to train an asynchronous detector on sudden events and use it to detect gradual mismatches, as well as obtaining an estimate of their unknown onset. Post-hoc time-locked scalp and brain-source analyses revealed that the EEG patterns of detected gradual mismatches originated in brain areas related to cognitive control processing. This indicates that gradual events induce latency in the evaluation process but that similar brain mechanisms are present in sudden and gradual mismatch events. Furthermore, the proposed asynchronous detection model widens the scope of applications of brain-machine interfaces to other gradual processes.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Eletroencefalografia/métodos , Percepção de Movimento/fisiologia , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Adulto , Atenção/fisiologia , Humanos , Aprendizado de Máquina , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
J Neural Eng ; 12(3): 036007, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915773

RESUMO

OBJECTIVE: Brain-computer interfaces (BCI) as a rehabilitation tool have been used to restore functions in patients with motor impairments by actively involving the central nervous system and triggering prosthetic devices according to the detected pre-movement state. However, since EEG signals are highly variable between subjects and recording sessions, typically a BCI is calibrated at the beginning of each session. This process is inconvenient especially for patients suffering locomotor disabilities in maintaining a bipedal position for a longer time. This paper presents a continuous EEG decoder of a pre-movement state in self-initiated walking and the usage of this decoder from session to session without recalibrating. APPROACH: Ten healthy subjects performed a self-initiated walking task during three sessions, with an intersession interval of one week. The implementation of our continuous decoder is based on the combination of movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features with sparse classification models. MAIN RESULTS: During intrasession our technique detects the pre-movement state with 70% accuracy. Moreover this decoder can be applied from session to session without recalibration, with a decrease in performance of about 4% on a one- or two-week intersession interval. SIGNIFICANCE: Our detection model operates in a continuous manner, which makes it a straightforward asset for rehabilitation scenarios. By using both temporal and spectral information we attained higher detection rates than the ones obtained with the MRCP and ERD detection models, both during the intrasession and intersession conditions.


Assuntos
Antecipação Psicológica/fisiologia , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Córtex Motor/fisiologia , Volição/fisiologia , Caminhada/fisiologia , Adulto , Algoritmos , Calibragem , Eletroencefalografia/normas , Feminino , Humanos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 498-501, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736308

RESUMO

Brain-computer interfaces (BCIs) have been used in patients with motor impairments as a rehabilitation tool, allowing the control of prosthetic devices with their brain signals. Typically, before each rehabilitation session a calibration phase is recorded to account for session-specific signal changes. Calibration is often an inconvenient process due to its length and patients' fatigue-proneness. This paper focuses on improving the performance of an EEG-based detector of walking intention for intersession transfer. Nine stroke subjects executed a self-paced walking task during three sessions, with one week between sessions. We performed an intersession adaptation by using 80% of one session's data and an additional 20% of a next session for training, and then we tested the detection model on the remaining part of the next session. In practice, this would constitute a longer initial calibration (40 minutes) and a shorter recalibration in subsequent sessions (10 minutes). After training set adaption we attain an average increase in performance of 13.5% over non-adaptive training. Furthermore, we used an approximation of Kullback-Leibler (KL) divergence to quantify the difference between training and testing sets for the non-adaptive and adaptive transfer. As a potential explanation for the improvement of intersession performance, we found a significant decrease in KL-divergence in the case of adaptive transfer.


Assuntos
Acidente Vascular Cerebral , Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Intenção , Reabilitação do Acidente Vascular Cerebral , Caminhada
14.
J Neuroeng Rehabil ; 11: 153, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25398273

RESUMO

BACKGROUND: Brain-machine interfaces (BMI) have recently been integrated within motor rehabilitation therapies by actively involving the central nervous system (CNS) within the exercises. For instance, the online decoding of intention of motion of a limb from pre-movement EEG correlates is being used to convert passive rehabilitation strategies into active ones mediated by robotics. As early stages of upper limb motor rehabilitation usually focus on analytic single-joint mobilizations, this paper investigates the feasibility of building BMI decoders for these specific types of movements. METHODS: Two different experiments were performed within this study. For the first one, six healthy subjects performed seven self-initiated upper-limb analytic movements, involving from proximal to distal articulations. For the second experiment, three spinal cord injury patients performed two of the previously studied movements with their healthy elbow and paralyzed wrist. In both cases EEG neural correlates such as the event-related desynchronization (ERD) and movement related cortical potentials (MRCP) were analyzed, as well as the accuracies of continuous decoders built using the pre-movement features of these correlates (i.e., the intention of motion was decoded before movement onset). RESULTS: The studied movements could be decoded in both healthy subjects and patients. For healthy subjects there were significant differences in the EEG correlates and decoding accuracies, dependent on the moving joint. Percentages of correctly anticipated trials ranged from 75% to 40% (with chance level being around 20%), with better performances for proximal than for distal movements. For the movements studied for the SCI patients the accuracies were similar to the ones of the healthy subjects. CONCLUSIONS: This paper shows how it is possible to build continuous decoders to detect movement intention from EEG correlates for seven different upper-limb analytic movements. Furthermore we report differences in accuracies among movements, which might have an impact on the design of the rehabilitation technologies that will integrate this new type of information. The applicability of the decoders was shown in a clinical population, with similar performances between healthy subjects and patients.


Assuntos
Interfaces Cérebro-Computador , Intenção , Movimento/fisiologia , Traumatismos da Medula Espinal/reabilitação , Extremidade Superior/fisiopatologia , Adulto , Eletroencefalografia , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
15.
Front Behav Neurosci ; 8: 296, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25228864

RESUMO

Cognitive deficits are core symptoms of depression. This study aims to investigate whether neurofeedback (NF) training can improve working memory (WM) performance in patients with major depressive disorder (MDD). The NF group (n = 40) underwent eight NF sessions and was compared to a non-interventional control group (n = 20). The NF protocol aimed to increase the individual upper alpha power in the parieto-occipital area of the scalp. Main cognitive variable was WM, which was measured pre- and post- training along with other variables such as attention and executive functions. EEG was recorded in both eyes closed resting state and eyes open task-related activity, pre- and post- NF training, and pre- and post- the NF trials within each session. A power EEG analysis and an alpha asymmetry analysis were conducted at the sensor level. Frequency domain standardized low resolution tomography (sLORETA) was used to assess the effect at brain source level. Correlation analysis between the clinical/cognitive and EEG measurements was conducted at both the sensor and brain source level. The NF group showed increased performance as well as improved processing speed in a WM test after the training. The NF group showed pre-post enhancement in the upper alpha power after the training, better visible in task-related activity as compared to resting state. A current density increase appeared in the alpha band (8-12 Hz) for the NF group, localized in the subgenual anterior cingulate cortex (sgACC, BA 25). A positive correlation was found for the NF group between the improvement in processing speed and the increase of beta power at both the sensor and brain source level. These results show the effectiveness of this NF protocol in improving WM performance in patients with MDD.

16.
Artigo em Inglês | MEDLINE | ID: mdl-24110922

RESUMO

One of the main problems of EEG-based brain computer interfaces (BCIs) is their low information rate, thus for complex tasks the user needs large amounts of time to solve the task. In an attempt to reduce this time and improve the application robustness, recent works have explored shared-control strategies where the device does not only execute the decoded commands, but it is also involved in executing the task. This work proposes a shared-control BCI using error potentials for a 2D reaching task with discrete actions and states. The proposed system has several interesting properties: the system is scalable without increasing the complexity of the user's mental task; the interaction is natural for the user, as the mental task is to monitor the device performance to promote its task learning (in this context the reaching task); and the system has the potential to be combined with additional brain signals to recover or learn from interaction errors. Online control experiments were performed with four subjects, showing that it was possible to reach a goal location from any starting point within a 5×5 grid in around 23 actions (about 19 seconds of EEG signal), both with fixed goals and goals freely chosen by the users.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Adulto , Sistemas Computacionais , Potenciais Evocados , Humanos , Aprendizagem , Experimentação Humana não Terapêutica
17.
Artigo em Inglês | MEDLINE | ID: mdl-24110923

RESUMO

EEG brain-computer interfaces (BCI) require a calibration phase prior to the on-line control of the device, which is a difficulty for the practical development of this technology as it is user-, session- and task-specific. The large body of research in BCIs based on event-related potentials (ERP) use temporal features, which have demonstrated to be stable for each user along time, but do not generalize well among tasks different from the calibration task. This paper explores the use of low frequency features to improve the generalization capabilities of the BCIs using error-potentials. The results show that there exists a stable pattern in the frequency domain that allows a classifier to generalize among the tasks. Furthermore, the study also shows that it is possible to combine temporal and frequency features to obtain the best of both domains.


Assuntos
Eletroencefalografia/métodos , Adulto , Interfaces Cérebro-Computador , Calibragem , Potenciais Evocados , Humanos , Masculino , Experimentação Humana não Terapêutica
18.
PLoS One ; 8(4): e61976, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613992

RESUMO

Several works have reported on the reconstruction of 2D/3D limb kinematics from low-frequency EEG signals using linear regression models based on positive correlation values between the recorded and the reconstructed trajectories. This paper describes the mathematical properties of the linear model and the correlation evaluation metric that may lead to a misinterpretation of the results of this type of decoders. Firstly, the use of a linear regression model to adjust the two temporal signals (EEG and velocity profiles) implies that the relevant component of the signal used for decoding (EEG) has to be in the same frequency range as the signal to be decoded (velocity profiles). Secondly, the use of a correlation to evaluate the fitting of two trajectories could lead to overly-optimistic results as this metric is invariant to scale. Also, the correlation has a non-linear nature that leads to higher values for sinus/cosinus-like signals at low frequencies. Analysis of these properties on the reconstruction results was carried out through an experiment performed in line with previous studies, where healthy participants executed predefined reaching movements of the hand in 3D space. While the correlations of limb velocity profiles reconstructed from low-frequency EEG were comparable to studies in this domain, a systematic statistical analysis revealed that these results were not above the chance level. The empirical chance level was estimated using random assignments of recorded velocity profiles and EEG signals, as well as combinations of randomly generated synthetic EEG with recorded velocity profiles and recorded EEG with randomly generated synthetic velocity profiles. The analysis shows that the positive correlation results in this experiment cannot be used as an indicator of successful trajectory reconstruction based on a neural correlate. Several directions are herein discussed to address the misinterpretation of results as well as the implications on previous invasive and non-invasive works.


Assuntos
Eletroencefalografia , Extremidades/fisiologia , Modelos Neurológicos , Processamento de Sinais Assistido por Computador , Adulto , Fenômenos Biomecânicos/fisiologia , Eletrodos , Humanos , Modelos Lineares , Masculino , Couro Cabeludo
19.
J Neurosci Methods ; 212(1): 28-42, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23022309

RESUMO

This work presents a new dipolar method to estimate the neural sources from separate or combined EEG and MEG data. The novelty lies in the simultaneous estimation and integration of neural sources from different dynamic models with different parameters, leading to a dynamic multi-model solution for the EEG/MEG source localization problem. The first key aspect of this method is defining the source model as a dipolar dynamic system, which allows for the estimation of the probability distribution of the sources within the Bayesian filter estimation framework. A second important aspect is the consideration of several banks of filters that simultaneously estimate and integrate the neural sources of different models. A third relevant aspect is that the final probability estimate is a result of the probabilistic integration of the neural sources of numerous models. Such characteristics lead to a new approach that does not require a prior definition neither of the number of sources or of the underlying temporal dynamics, allowing for the specification of multiple initial prior estimates. The method was validated by three sensor modalities with simulated data designed to impose difficult estimation situations, and with real EEG data recorded in a feedback error-related potential paradigm. On the basis of these evaluations, the method was able to localize the sources with high accuracy.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Dinâmica não Linear , Algoritmos , Teorema de Bayes , Eletroencefalografia , Humanos , Magnetoencefalografia
20.
IEEE Trans Syst Man Cybern B Cybern ; 42(3): 793-804, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22180512

RESUMO

This paper reports an electroencephalogram-based brain-actuated telepresence system to provide a user with presence in remote environments through a mobile robot, with access to the Internet. This system relies on a P300-based brain-computer interface (BCI) and a mobile robot with autonomous navigation and camera orientation capabilities. The shared-control strategy is built by the BCI decoding of task-related orders (selection of visible target destinations or exploration areas), which can be autonomously executed by the robot. The system was evaluated using five healthy participants in two consecutive steps: 1) screening and training of participants and 2) preestablished navigation and visual exploration telepresence tasks. On the basis of the results, the following evaluation studies are reported: 1) technical evaluation of the device and its main functionalities and 2) the users' behavior study. The overall result was that all participants were able to complete the designed tasks, reporting no failures, which shows the robustness of the system and its feasibility to solve tasks in real settings where joint navigation and visual exploration were needed. Furthermore, the participants showed great adaptation to the telepresence system.


Assuntos
Inteligência Artificial , Biorretroalimentação Psicológica/métodos , Potenciais Evocados P300 , Sistemas Homem-Máquina , Modelos Teóricos , Robótica/métodos , Interface Usuário-Computador , Algoritmos , Simulação por Computador , Técnicas de Apoio para a Decisão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...