Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131601, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626833

RESUMO

This study investigates the impact of water and salinity stress on Aloe vera, focusing on the role of Aloe vera polysaccharides in mitigating these stresses. Pectins and acemannan were the most affected polymers. Low soil moisture and high salinity (NaCl 80 mM) increased pectic substances, altering rhamnogalacturonan type I in Aloe vera gel. Aloe vera pectins maintained a consistent 60 % methyl-esterification regardless of conditions. Interestingly, acemannan content rose with salinity, particularly under low moisture, accompanied by 90 to 150 % acetylation increase. These changes improved the functionality of Aloe vera polysaccharides: pectins increased cell wall reinforcement and interactions, while highly acetylated acemannan retained water for sustained plant functions. This study highlights the crucial role of Aloe vera polysaccharides in enhancing plant resilience to water and salinity stress, leading to improved functional properties.

2.
Gels ; 9(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37504431

RESUMO

Aloe vera (Aloe barbadensis Miller) gel is a frequently used ingredient in many food pro-ducts, particularly beverages, due to its reported health benefits. Studies have identified acemannan, a polysaccharide rich in mannose units which are partially or fully acetylated, as the primary bioactive compound in Aloe vera gel. The acemannan content and its degree of acetylation (DA) were measured in 15 different commercial beverages containing Aloe vera at varying concentrations (from 30% to 99.8%) as listed on the label. Other biopolymers such as pectins, hemicelluloses, and cellulose were also evaluated. Flavoured beverages (seven samples labelled as containing from 30% to 77% Aloe vera) presented low levels of acemannan (<30 mg/100 g of fresh sample) and were fully deacetylated in most cases. These samples had high levels of other polymers such as pectins, hemicelluloses, and cellulose, likely due to the addition of fruit juices for flavour. Unflavoured beverages (eight samples, with Aloe vera concentrations above 99% according to their labels) had variable levels of acemannan, with only three containing more than 160 mg/100 g of fresh sample. In fact, four samples had less than 35 mg acemannan/100 g of fresh sample. DA levels in all but one sample were lower than 35%, possibly due to processing techniques such as pasteurization causing degradation and deacetylation of the acemannan polymer. Legislation regarding Aloe vera products is limited, and manufacturers are not required to disclose the presence or quality of bioactive compounds in their products, leaving consumers uncertain about the true properties of the products they purchase.

3.
Foods ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832926

RESUMO

Aloe mucilages of Aloe ferox (A. ferox) and Aloe vera (A. vera) were spray-dried (SD) at 150, 160 and 170 °C. Polysaccharide composition, total phenolic compounds (TPC), antioxidant capacity and functional properties (FP) were determined. A. ferox polysaccharides were comprised mainly of mannose, accounting for >70% of SD aloe mucilages; similar results were observed for A. vera. Further, an acetylated mannan with a degree of acetylation >90% was detected in A. ferox by 1H NMR and FTIR. SD increased the TPC as well as the antioxidant capacity of A. ferox measured by both ABTS and DPPH methods, in particular by ~30%, ~28% and ~35%, respectively, whereas in A. vera, the antioxidant capacity measured by ABTS was reduced (>20%) as a consequence of SD. Further, FP, such as swelling, increased around 25% when A. ferox was spray-dried at 160 °C, while water retention and fat adsorption capacities exhibited lower values when the drying temperature increased. The occurrence of an acetylated mannan with a high degree of acetylation, together with the enhanced antioxidant capacity, suggests that SD A. ferox could be a valuable alternative raw material for the development of new functional food ingredients based on Aloe plants.

4.
Foods ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36076833

RESUMO

The bioactive compounds, antioxidant capacity and microbiological quality of melon juice processed by high-intensity ultrasound (HIUS) were studied. Melon juice was processed at two ultrasound intensities (27 and 52 W/cm2) for two different processing times (10 and 30 min) using two duty cycles (30 and 75%). Unprocessed juice was taken as a control. Total carotenoids and total phenolic compounds (TPC) were the bioactive compounds analyzed while the antioxidant capacity was determined by DPPH, ABTS and FRAP assays. The microbiological quality was tested by counting the aerobic and coliforms count as well as molds and yeasts. Total carotenoids increased by up to 42% while TPC decreased by 33% as a consequence of HIUS processing regarding control juice (carotenoids: 23 µg/g, TPC: 1.1 mg GAE/g), gallic acid and syringic acid being the only phenolic compounds identified. The antioxidant capacity of melon juice was enhanced by HIUS, achieving values of 45% and 20% of DPPH and ABTS inhibition, respectively, while >120 mg TE/100 g was determined by FRAP assay. Further, the microbial load of melon juice was significantly reduced by HIUS processing, coliforms and molds being the most sensitive. Thus, the HIUS could be an excellent alternative supportive the deep-processing of melon products.

5.
Ultrason Sonochem ; 56: 125-133, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101246

RESUMO

The impact of thermosonication on the functional properties and the main polysaccharides from Aloe vera was investigated. Thermal processing was used for comparison purposes. Acemannan was the predominant polysaccharide in Aloe vera juice followed by pectins. Interestingly, thermosonication promoted a minor degradation of the acetylated mannose from acemannan than thermal processing. On the other hand, the degree of methylesterification of pectins was slightly reduced as a consequence of thermosonication. Further, swelling and fat adsorption capacities were improved by thermosonication. Thus, the highest values for swelling (>150 mL/g AIR) and for fat adsorption capacity (∼120 g oil/g AIR) were observed when thermosonication was performed at 50 °C for 6 min. Moreover, high inactivation of L. plantarum (∼75%) was observed when thermosonication was carried out at 50 °C for 9 min. Interestingly, thermosonication promoted a similar color change (ΔE = 7.7) to the modification observed during pasteurization carried out at 75 °C for 15 min (ΔE = 8.2 ±â€¯0.9). Overall, these results suggested that thermosonication could be a good alternative to thermal procedures of Aloe vera juice, since not only caused minor degradation of bioactive polysaccharides but was also able to improve functional properties.


Assuntos
Aloe/química , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Polissacarídeos/química , Polissacarídeos/farmacologia , Sonicação , Temperatura , Cor , Lactobacillus plantarum/efeitos dos fármacos , Solubilidade , Água/química
6.
J AOAC Int ; 101(6): 1711-1719, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29895349

RESUMO

Aloe vera (A. barbadensis Miller) is probably one of the most popular plants, widely studied because of numerous properties associated with the polysaccharides present in its gel. In particular, two main types of bioactive polysaccharides can be distinguished in the A. vera gel: an acetylated mannose-rich polymer that functions as storage polysaccharide, and a galacturonic acid-rich polymer as the main component comprising the cell walls of the parenchymatous tissue. Interestingly, most of the beneficial properties related to the aloe plant have been associated with the acetylated mannose-rich polysaccharide, also known as acemannan. However, the composition and structural features of these polysaccharides, as well as the beneficial properties associated with them, may be altered by different factors, such as the climate, soil, postharvest treatments, and processing. Further, different analytical methods have been used not only to identify but also to characterize the main polysaccharides found in parenchyma of A. vera leaf. Within this context, the main aim of this review is to summarize the most relevant information about the structural and compositional features of the main polysaccharides found in the A. vera gel as well as the most relevant analytical techniques used for their identification and their influence on the technological, functional, and beneficial properties related to the A. vera plant.


Assuntos
Aloe/química , Celulose/química , Mananas/química , Pectinas/química , Sequência de Carboidratos , Celulose/análise , Mananas/análise , Mananas/metabolismo , Mananas/farmacologia , Pectinas/análise , Pectinas/metabolismo , Pectinas/farmacologia , Reologia , Viscosidade , Água/química
7.
Carbohydr Polym ; 168: 327-336, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457457

RESUMO

The main effects of different drying procedures: spray-, industrial freeze-, refractance window- and radiant zone-drying, on acemannan, the main bioactive polysaccharide from Aloe vera gel, were investigated. All the drying procedures caused a considerable decrease in the acemannan yield (∼40%). Degradation affected not only the backbone, as indicated by the important losses of (1→4)-linked mannose units, but also the side-chains formed by galactose. In addition, methylation analysis suggested the deacetylation of mannose units (>60%), which was confirmed by 1H NMR analysis. Interestingly, all these changes were reflected in the functional properties which were severely affected. Thus, water retention capacity values from processed samples decreased ∼50%, and a reduction greater than 80% was determined in swelling and fat adsorption capacity values. Therefore, these important modifications should be taken into consideration, since not only the functionality but also the physiological effects attributed to many Aloe vera-based products could also be affected.


Assuntos
Aloe/química , Dessecação , Mananas/química , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...