Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 249: 118404, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341071

RESUMO

Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/análise , Poluentes Orgânicos Persistentes , Biodegradação Ambiental
2.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234454

RESUMO

Heterojunction Cu(In,Ga)Se2 (CIGS) solar cells comprise a substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al. Here, Al-doped zinc oxide (AZO) films were deposited by magnetron sputtering, and the substrate temperature was optimized for CIGS solar cells with two types of CIGS light absorbers with different material properties fabricated by three-stage co-evaporation and two-step metallization followed by sulfurization after selenization (SAS). The microstructure and optoelectronic properties of the AZO thin films fabricated at different substrate temperatures (150-550 °C) were analyzed along with their effects on the CIGS solar cell performance. X-ray diffraction results confirmed that all the deposited AZO films have a hexagonal wurtzite crystal structure regardless of substrate temperature. The optical and electrical properties of the AZO films improved significantly with increasing substrate temperature. Photovoltaic performances of the two types of CIGS solar cells were influenced by changes in the AZO substrate temperature. For the three-stage co-evaporated CIGS cell, as the sputter-deposition temperature of the AZO layer was raised from 150 °C to 550 °C, the efficiencies of CIGS devices decreased monotonically, which suggests the optimum AZO deposition temperature is 150 °C. In contrast, the cell efficiency of CIGS devices fabricated using the two-step SAS-processed CIGS absorbers improved with increasing the AZO deposition temperature from 150 to 350 °C. However, the rise in AZO deposition temperature to 550 °C decreased the cell efficiency, indicating that the optimum AZO deposition temperature was 350 °C. The findings of this study provide insights for the efficient fabrication of CIGS solar cells considering the correlation between CIGS absorber characteristics and AZO layer deposition temperature.

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35564212

RESUMO

Wet ball milling was used for the synthesis of Cu2ZnSnSe4 (CZTSe) nanoparticles with a kesterite structure. The prepared nanoparticles were used for ink formulation. Surfactants and binders were added to improve the ink stability, prevent agglomeration, and enhance ink adhesion. The films deposited via spin coating were annealed at different temperatures using a rapid thermal processing system in the presence of selenium powder in an inert environment. Analytical techniques, such as X-ray diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy, were used to confirm the formation of CZTSe nanoparticles with a single-phase, crystalline kesterite structure. Field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to study the surface morphology and chemical composition of the thin films before and after annealing, with and without the sodium solution. The optoelectrical properties were investigated using ultraviolet-visible spectroscopy and Hall measurements. All the prepared CZTSe thin films exhibited a p-type nature with an optical bandgap in the range of 0.82-1.02 eV. The open-circuit voltage and fill factor of the CZTSe-based devices increased from 266 to 335 mV and from 37.79% to 44.19%, respectively, indicating a decrease in the number of recombination centers after Na incorporation.

4.
Environ Res ; 212(Pt D): 113497, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35618006

RESUMO

Activated carbon from cashew nut shell via a potassium hydroxide (KOH) at 600 °C in an N2 atmosphere and their characteristics using FT-IR, XRD, SEM with EDS, and BET analysis was investigated. The cashew nut shell activated carbon obtained by KOH activation with a CNS/KOH ratio of 1:1 at 600 °C (N2 atmosphere) for 2 h had the highest surface area (407.80 m2/g) as compared to other ratio samples. Amongst, CNS/KOH ratios of 1:1 sample are used for the adsorbent, they are effects of contact time, pH, adsorbent dose, and initial dye concentration on brilliant green (BG) removal efficiency were studied. Moreover, the Langmuir and Freundlich adsorption models consisted utilized to affirm the adsorption isotherms. They are, best fitting for BG experimental equilibrium data was achieved with the Langmuir isotherm, giving a maximum BG adsorption capacity of 243.90 mg/g.


Assuntos
Anacardium , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Hidróxidos , Cinética , Nozes/química , Compostos de Potássio , Compostos de Amônio Quaternário , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
5.
Chemosphere ; 302: 134844, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525454

RESUMO

Ag-doped TiO2 and Ag-doped TiO2 loaded cassava stem activated carbon (Ag: TiO2/CSAC) were prepared by sol-gel method and are labelled as AT and AT/CSAC respectively. XRD results confirmed that the anatase-TiO2 and crystalline size are decreased (12.37 nm) through the silver doping and cassava stem activated carbon loading. UV-Vis showed that the AT/CSAC makes a red shift from the absorption edge compared to pure and AT samples and then the band gap is reduced (2.81 eV). The increased surface area (238.51 m2/g) of the AT/CSAC sample through the Ag and CSAC, respectively. The consequences point out that the highest photodegradation efficiency (98.08%) of the TiO2 upon silver doping and cassava stem activated carbon loading samples were brilliant green (BG) under sunlight irradiation.


Assuntos
Poluentes Ambientais , Manihot , Catálise , Carvão Vegetal , Prata/química , Luz Solar , Titânio/química
6.
Nanomaterials (Basel) ; 12(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055298

RESUMO

Energy consumption and environmental pollution are major issues faced by the world. The present study introduces a single solution using SnS2 for these two major global problems. SnS2 nanoparticles and thin films were explored as an adsorbent to remove organic toxic materials (Rhodamine B (RhB)) from water and an alternative to the toxic cadmium sulfide (CdS) buffer for thin-film solar cells, respectively. Primary characterization tools such as X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), and UV-Vis-NIR spectroscopy were used to analyze the SnS2 nanoparticles and thin films. At a reaction time of 180 min, 0.4 g/L of SnS2 nanoparticles showed the highest adsorption capacity of 85% for RhB (10 ppm), indicating that SnS2 is an appropriate adsorbent. The fabricated Cu(In,Ga)Se2 (CIGS) device with SnS2 as a buffer showed a conversion efficiency (~5.1%) close to that (~7.5%) of a device fabricated with the conventional CdS buffer, suggesting that SnS2 has potential as an alternative buffer.

7.
Nanomaterials (Basel) ; 11(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34443785

RESUMO

The rapid research progress in tin-based binary sulfides (SnxSy = o-SnS, c-SnS, SnS2, and Sn2S3) by the solution process has opened a new path not only for photovoltaics to generate clean energy at ultra-low costs but also for photocatalytic and thermoelectric applications. Fascinated by their prosperous developments, a fundamental understanding of the SnxSy thin film growth with respect to the deposition parameters is necessary to enhance the film quality and device performance. Therefore, the present review article initially delivers all-inclusive information such as structural characteristics, optical characteristics, and electrical characteristics of SnxSy. Next, an overview of the chemical bath deposition of SnxSy thin films and the influence of each deposition parameter on the growth and physical properties of SnxSy are interestingly outlined.

8.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803574

RESUMO

Tin sulfide polymorph (π-SnS) nanoparticles exhibit promising optoelectrical characteristics for photovoltaic and hydrogen production performance, mainly because of the possibility of tuning their properties by adjusting the synthesis conditions. This study demonstrates a chemical approach to synthesize π-SnS nanoparticles and the engineering of their properties by altering the Sn precursor concentration (from 0.04 M to 0.20 M). X-ray diffraction and Raman studies confirmed the presence of pure cubic SnS phase nanoparticles with good crystallinity. SEM images indicated the group of cloudy shaped grains, and XPS results confirmed the presence of Sn and S in the synthesized nanoparticles. Optical studies revealed that the estimated energy bandgap values of the as-synthesized π-SnS nanoparticles varied from 1.52 to 1.68 eV. This work highlights the effects of the Sn precursor concentration on the properties of the π-SnS nanoparticles and describes the bandgap engineering process. Optimized π-SnS nanoparticles were used to deposit nanocrystalline π-SnS thin films using the drop-casting technique, and their physical properties were improved by annealing (300 °C for 2 h).

9.
Sci Rep ; 11(1): 5023, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658543

RESUMO

Surface area and surface active sites are two important key parameters in enhancing the gas sensing as well as photocatalytic properties of the parent material. With this motivation, herein, we report a facile synthesis of Reduced Graphene Oxide/Tungsten Oxide RGO/WO3 hierarchical nanostructures via simple hydrothermal route, and their validation in accomplishment of improved H2S sensing and highly efficient solar driven photo-degradation of RhB Dye. The self-made RGO using modified Hummer's method, is utilized to develop the RGO/WO3 nanocomposites with 0.15, 0.3 and 0.5 wt% of RGO in WO3 matrix. As-developed nanocomposites were analyzed using various physicochemical techniques such as XRD, FE-SEM, TEM/HRTEM, and EDAX. The creation of hierarchic marigold frameworks culminated in a well affiliated mesoporous system, offering efficient gas delivery networks, leading to a significant increase in sensing response to H2S. The optimized sensor (RGO/WO3 with 0.3 wt% loading) exhibited selective response towards H2S, which is ~ 13 times higher (Ra/Rg = 22.9) than pristine WO3 (Ra/Rg = 1.78) sensor. Looking at bi-directional application, graphene platform boosted the photocatalytic activity (94% degradation of Rhodamine B dye in 210 min) under natural sunlight. The RGO's role in increasing the active surface and surface area is clarified by the H2S gas response analysis and solar-driven photo-degradation of RhB dye solution. The outcome of this study provides the new insights to RGO/WO3 based nanocomposites' research spreadsheet, in view of multidisciplinary applications.

10.
Nanomaterials (Basel) ; 10(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019191

RESUMO

A graphene-cadmium sulfide (Gr-CdS) nanocomposite was prepared by a chemical solution method, and its material properties were characterized by several analysis techniques. The synthesized pure CdS nanoparticles (NPs) and Gr-CdS nanocomposites were confirmed to have a stoichiometric atomic ratio (Cd/S = 1:1). The Cd 3d and S 2p peaks of the Gr-CdS nanocomposite appeared at lower binding energies compared to those of the pure CdS NPs according to X-ray photoelectron spectroscopy analyses. The formation of the Gr-CdS nanocomposite was also evidenced by the structural analysis using Raman spectroscopy and X-ray diffraction. Transmission electron microscopy confirmed that CdS NPs were uniformly distributed on the graphene sheets. The absorption spectra of both the Gr-CdS nanocomposite and pure CdS NPs thin films showed an absorption edge at 550 nm related to the energy band gap of CdS (~2.42 eV). The Cu(In,Ga)Se2 thin film photovoltaic device with Gr-CdS nanocomposite buffer layer showed a higher electrical conversion efficiency than that with pure CdS NPs thin film buffer layer. In addition, the water splitting efficiency of the Gr-CdS nanocomposite was almost three times higher than that of pure CdS NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...