Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1928, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028271

RESUMO

Lead chalcogenides have exceptional thermoelectric properties and intriguing anharmonic lattice dynamics underlying their low thermal conductivities. An ideal material for thermoelectric efficiency is the phonon glass-electron crystal, which drives research on strategies to scatter or localize phonons while minimally disrupting electronic-transport. Anharmonicity can potentially do both, even in perfect crystals, and simulations suggest that PbSe is anharmonic enough to support intrinsic localized modes that halt transport. Here, we experimentally observe high-temperature localization in PbSe using neutron scattering but find that localization is not limited to isolated modes - zero group velocity develops for a significant section of the transverse optic phonon on heating above a transition in the anharmonic dynamics. Arrest of the optic phonon propagation coincides with unusual sharpening of the longitudinal acoustic mode due to a loss of phase space for scattering. Our study shows how nonlinear physics beyond conventional anharmonic perturbations can fundamentally alter vibrational transport properties.

2.
Sci Rep ; 6: 32744, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27595609

RESUMO

Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling.

3.
J Phys Condens Matter ; 27(5): 053202, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25603881

RESUMO

Heat conduction by phonons is a ubiquitous process that incorporates a wide range of physics and plays an essential role in applications ranging from space power generation to LED lighting. Heat conduction has been studied for over two hundred years, yet many of the microscopic details have remained unknown in most crystalline solids, including which phonon-phonon interactions are primarily responsible for thermal resistance and how heat is distributed among the broad thermal spectrum. This lack of knowledge was the result of limitations on the available tools to study heat conduction. However, recent advances in both computation and experiment are enabling an unprecedented microscopic view of thermal transport by phonons in both bulk and nanostructured crystals, from the level of atomic bonding to mesoscopic transport in complex devices. In this topical review, we examine these techniques and the microscopic insights gained into the science and engineering of heat conduction.

4.
Nat Mater ; 14(2): 187-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384166

RESUMO

Thermal dissipation at the active region of electronic devices is a fundamental process of considerable importance. Inadequate heat dissipation can lead to prohibitively large temperature rises that degrade performance, and intensive efforts are under way to mitigate this self-heating. At room temperature, thermal resistance is due to scattering, often by defects and interfaces in the active region, that impedes the transport of phonons. Here, we demonstrate that heat dissipation in widely used cryogenic electronic devices instead occurs by phonon black-body radiation with the complete absence of scattering, leading to large self-heating at cryogenic temperatures and setting a key limit on the noise floor. Our result has important implications for the many fields that require ultralow-noise electronic devices.

5.
Phys Rev Lett ; 109(20): 205901, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215510

RESUMO

The mean free paths (MFPs) of thermal phonons are mostly unknown in many solids. Recent work indicates that MFPs may be measured using experimental observations of quasiballistic thermal transport, but the precise relationship between the measurements and the MFP distribution remains unclear. Here, we present a method that can accurately reconstruct the MFP distribution from quasiballistic thermal measurements without any assumptions regarding the phonon scattering mechanisms. Our result will enable a substantially improved understanding of thermal transport in many solids, particularly thermoelectrics.

6.
Phys Rev Lett ; 107(9): 095901, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21929254

RESUMO

Size effects in heat conduction, which occur when phonon mean free paths (MFPs) are comparable to characteristic lengths, are being extensively explored in many nanoscale systems for energy applications. Knowledge of MFPs is essential to understanding size effects, yet MFPs are largely unknown for most materials. Here, we introduce the first experimental technique which can measure MFP distributions over a wide range of length scales and materials. Using this technique, we measure the MFP distribution of silicon for the first time and obtain good agreement with first-principles calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...