Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(20): eadf2982, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196091

RESUMO

The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circadian clocks may affect the central pacemaker, we used a chimeric model in which mouse hepatocytes were replaced by human hepatocytes. Liver humanization led to reprogrammed diurnal gene expression and advanced the phase of the liver circadian clock that extended to muscle and the entire rhythmic physiology. Similar to clock-deficient mice, liver-humanized mice shifted their rhythmic physiology more rapidly to the light phase under day feeding. Our results indicate that hepatocyte clocks can affect the central pacemaker and offer potential perspectives to apprehend pathologies associated with altered circadian physiology.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Camundongos , Animais , Ritmo Circadiano/genética , Fígado/metabolismo , Hepatócitos , Relógios Circadianos/genética , Núcleo Supraquiasmático/metabolismo
2.
J Intern Med ; 292(2): 296-307, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34982494

RESUMO

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Assuntos
Fígado Gorduroso , Insulinas , Esterol O-Aciltransferase , Animais , Ésteres do Colesterol/metabolismo , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Triglicerídeos , Esterol O-Aciltransferase 2
3.
Methods Mol Biol ; 2164: 101-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607887

RESUMO

The determination of the lipid content in liver offers the potential to investigate metabolic alterations in different research contexts. Here, we describe a method to determine cholesterol, triglycerides, and phospholipids in liver samples based on total lipid isolation by a 2:1 chloroform-methanol mixture (Folch extraction) and specific enzymatic colorimetric microassays in plate.


Assuntos
Colorimetria/métodos , Lipídeos/química , Fígado/metabolismo , Clorofórmio/química , Colesterol/metabolismo , Humanos , Metanol/química , Fosfolipídeos/metabolismo , Solventes/química , Triglicerídeos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32058035

RESUMO

In contrast to human hepatocytes in vivo, which solely express acyl-coenzyme A:cholesterol acyltransferase (ACAT) 2, both ACAT1 and ACAT2 (encoded by SOAT1 and SOAT2) are expressed in primary human hepatocytes and in human hepatoma cell lines. Here, we aimed to create hepatocyte-like cells expressing the ACAT2, but not the ACAT1, protein to generate a model that - at least in this regard - resembles the human condition in vivo and to assess the effects on lipid metabolism. Using the Clustered Regularly Interspaced Short Palindromic Repeats technology, we knocked out SOAT1 in HepG2 and Huh7.5 cells. The wild type and SOAT2-only-cells were cultured with fetal bovine or human serum and the effects on lipoprotein and lipid metabolism were studied. In SOAT2-only-HepG2 cells, increased levels of cholesterol, triglycerides, apolipoprotein B and lipoprotein(a) in the cell media were detected; this was likely dependent of the increased expression of key genes involved in lipid metabolism (e.g. MTP, APOB, HMGCR, LDLR, ACACA, and DGAT2). Opposite effects were observed in SOAT2-only-Huh7.5 cells. Our study shows that the expression of SOAT1 in hepatocyte-like cells contributes to the distorted phenotype observed in HepG2 and Huh7.5 cells. As not only parameters of lipoprotein and lipid metabolism but also some markers of differentiation/maturation increase in the SOAT2-only-HepG2 cells cultured with HS, this cellular model represent an improved model for studies of lipid metabolism.


Assuntos
Hepatócitos/enzimologia , Metabolismo dos Lipídeos/fisiologia , Lipoproteínas/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Esterol O-Aciltransferase 2
5.
Hepatology ; 72(2): 656-670, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31785104

RESUMO

BACKGROUND AND AIMS: Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. APPROACH AND RESULTS: Fah-/- , Rag2-/- , and Il2rg-/- knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. CONCLUSIONS: LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.


Assuntos
Benzoatos/farmacocinética , Benzilaminas/farmacocinética , Colesterol/metabolismo , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Receptores X do Fígado/agonistas , Fígado/metabolismo , Animais , Hepatócitos/transplante , Humanos , Fígado/cirurgia , Masculino , Camundongos , Camundongos Knockout
6.
J Am Heart Assoc ; 7(24): e009876, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561264

RESUMO

Background In randomized trials (SHARP [Study of Heart and Renal Protection], IMPROVE -IT [Improved Reduction of Outcomes: Vytorin Efficacy International Trial]), combination of statin and ezetimibe resulted in additional reduction of cardiovascular events. The reduction was greater in patients with type 2 diabetes mellitus (T2 DM ), where elevated remnant cholesterol and high cardiovascular disease risk is characteristic. To evaluate possible causes behind these results, 40 patients eligible for cholecystectomy, randomized to simvastatin, ezetimibe, combined treatment (simvastatin+ezetimibe), or placebo treatment during 4 weeks before surgery, were studied. Methods and Results Fasting blood samples were taken before treatment start and at the end (just before surgery). Bile samples and liver biopsies were collected during surgery. Hepatic gene expression levels were assessed with qPCR . Lipoprotein, apolipoprotein levels, and content of cholesterol, cholesteryl ester, and triglycerides were measured after lipoprotein fractionation. Lipoprotein subclasses were analyzed by nuclear magnetic resonance. Apolipoprotein affinity for human arterial proteoglycans ( PG ) was measured. Biomarkers of cholesterol biosynthesis and intestinal absorption and bile lipid composition were analyzed using mass spectrometry. Combined treatment caused a statistically significant decrease in plasma remnant particles and apolipoprotein B (ApoB)/lipoprotein content of cholesterol, cholesteryl esters, and triglycerides. All treatments reduced ApoB-lipoprotein PG binding. Simvastatin and combined treatment modified the composition of lipoproteins. Changes in biomarkers of cholesterol synthesis and absorption and bile acid synthesis were as expected. No adverse events were found. Conclusions Combined treatment caused atheroprotective changes on ApoB-lipoproteins, remnant particles, bile components, and in ApoB-lipoprotein affinity for arterial PG . These effects might explain the decrease of cardiovascular events seen in the SHARP and IMPROVE - IT trials. Clinical Trial Registration URL : www.clinicaltrialsregister.eu . Unique identifier: 2006-004839-30).


Assuntos
Bile/metabolismo , Colesterol/sangue , Remanescentes de Quilomícrons/sangue , Dislipidemias/tratamento farmacológico , Combinação Ezetimiba e Simvastatina/uso terapêutico , Cálculos Biliares/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Apolipoproteína B-100/sangue , Biomarcadores/sangue , Colecistectomia , Dislipidemias/sangue , Dislipidemias/diagnóstico , Combinação Ezetimiba e Simvastatina/efeitos adversos , Feminino , Cálculos Biliares/diagnóstico , Cálculos Biliares/cirurgia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Método Simples-Cego , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...