Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 130: 155077, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32208335

RESUMO

Macrophages are highly plastic in their pro-inflammatory/anti-inflammatory roles. Type I and II interferons (IFNs) are known to modulate macrophage activation. Tyrosine kinase 2 (Tyk2) has an intimate relationship with type I and II IFN signaling. Animal studies have shown that Tyk2 knock-out (KO) in mice is associated with reduced inflammatory responses in various mouse models of diseases. To investigate the role of Tyk2 in inflammation in more detail, we intraperitoneally injected heat-killed Propionibacterium acnes (P. acnes) to Tyk2 KO mice. P. acnes-induced acute peritoneal inflammation, assessed by neutrophil infiltration, was reduced in Tyk2 KO mice. The reduction was accompanied with diminished productions of inflammatory cytokines and an enhanced production of anti-inflammatory IL-10. Unexpectedly, pre-treatment of wild-type mice with the neutralizing antibodies for IFNs did not affect P. acnes-induced neutrophil infiltration. A neutralizing antibody for the IL-10 receptor in Tyk2 KO mice restored P. acnes-induced peritoneal inflammation. Enhanced production of IL-10 from Tyk2 KO peritoneal cells was suppressed by either the cyclooxygenase inhibitor diclofenac or protein kinase A inhibitor H-89. The level of prostaglandin E2 (PGE2) in the steady-state peritoneal cavity in Tyk2 KO mice was higher than that in wild-type mice. Tyk2 KO macrophages showed an enhanced CREB phosphorylation induced by P. acnes plus PGE2. Taken together, these results showed that Tyk2 deficiency potentiates the PGE2-protein kinase A-IL-10 pathway in macrophages, and thereby contributes to potentiation of the immunosuppressive phenotype.

2.
Immunohorizons ; 3(5): 172-185, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31356171

RESUMO

Cytokine IL-17A (IL-17) acts on various cell types, including epidermal keratinocytes, and induces antimicrobial peptide and chemokine production to elicit antibacterial and antifungal defense responses. Excess IL-17 leads to inflammatory skin diseases such as psoriasis. The IκB family protein IκB-ζ mediates IL-17-induced responses. However, the mechanism controlling IκB-ζ expression in IL-17-stimulated cells remains elusive. In this study, we showed that JAK kinase TYK2 positively regulates IL-17-induced IκB-ζ expression. TYK2-deficient mice showed reduced inflammation and concomitant reduction of IκB-ζ mRNA compared with wild-type mice in imiquimod-induced skin inflammation. The analysis of the IκB-ζ promoter activity using human cell lines (HaCaT and HeLa) revealed that catalytic activity of TYK2 and its substrate transcription factor STAT3, but not IL-17, is required for IκB-ζ promoter activity. In contrast, IL-17-induced signaling, which did not activate STAT3, posttranscriptionally stabilized IκB-ζ mRNA via its 3'-untranslated region. IL-17 signaling protein ACT1 was required to counteract constitutive IκB-ζ mRNA degradation by RNase Regnase-1. These results suggested that transcriptional activation by TYK2-STAT3 pathway and mRNA stabilization by IL-17-mediated signals act separately from each other but complementarily to achieve IκB-ζ induction. Therefore, JAK/TYK2 inhibition might be of significance in regulation of IL-17-induced inflammatory reactions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interleucina-17/metabolismo , Estabilidade de RNA , Fator de Transcrição STAT3/metabolismo , TYK2 Quinase/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Células HeLa , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Psoríase/induzido quimicamente , Psoríase/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , TYK2 Quinase/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...