Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(18): e202303994, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38323675

RESUMO

Immobilization of stimulus-responsive systems on solid surfaces is beneficial for controlled signal transmission and adaptive behavior while allowing the characterization of the functional interface with high sensitivity and high spatial resolution. Positioning of the stimuli-responsive units with nanometer-scale precision across the adaptive surface remains one of the bottlenecks in the extraction of cooperative function. Nanoscale organization, cooperativity, and amplification remain key challenges in bridging the molecular and the macroscopic worlds. Here we report on the design, synthesis, and scanning tunneling microscopy (STM) characterization of overcrowded alkene photoswitches merged in self-assembled networks physisorbed at the solid-liquid interface. A detailed anchoring strategy that ensures appropriate orientation of the switches with respect to the solid surface through the use of bis-urea groups is presented. We implement a co-assembly strategy that enables the merging of the photoswitches within physisorbed monolayers of structurally similar 'spacer' molecules. The self-assembly of the individual components and the co-assemblies was examined in detail using (sub)molecular resolution STM which confirms the robust immobilization and controlled orientation of the photoswitches within the spacer monolayers. The experimental STM data is supported by detailed molecular mechanics (MM) simulations. Different designs of the switches and the spacers were investigated which allowed us to formulate guidelines that enable the precise organization of the photoswitches in crystalline physisorbed self-assembled molecular networks.

2.
Chemistry ; 30(2): e202302545, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37840008

RESUMO

In recent years, there has been significant focus on investigating and controlling chiral self-assembly, specifically in the context of enantiomeric separation. This study explores the self-assembly behavior of 4-dodecyl-3,6-di(2-pyridyl)pyridazine (DPP-C12) at the interface between heptanoic acid (HA) and highly oriented pyrolytic graphite (HOPG) using a combination of scanning tunneling microscopy (STM) and multiscale molecular modeling. The self-assembled monolayer structure formed by DPP-C12 is periodic in one direction, but aperiodic in the direction orthogonal to it. These structures resemble 1D disordered racemic compounds. Upon introducing palladium [Pd(II)] ions, complexing with DPP-C12, these 1D disordered racemic compounds spontaneously transform into 2D racemic conglomerates, which is rationalized with the assistance of force-field simulations. Our findings provide insights into the regulation of two-dimensional chirality.

3.
J Am Chem Soc ; 145(2): 1194-1205, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36576950

RESUMO

Two-dimensional (2D) chirality has been actively studied in view of numerous applications of chiral surfaces such as in chiral resolutions and enantioselective catalysis. Here, we report on the expression and amplification of chirality in hybrid 2D metallosupramolecular networks formed by a nucleobase derivative. Self-assembly of a guanine derivative appended with a pyridyl node was studied at the solution-graphite interface in the presence and absence of coordinating metal ions. In the absence of coordinating metal ions, a monolayer that is representative of a racemic compound was obtained. This system underwent spontaneous resolution upon addition of a coordinating ion and led to the formation of a racemic conglomerate. The spontaneous resolution could also be achieved upon addition of a suitable guest molecule. The mirror symmetry observed in the formation of the metallosupramolecular networks could be broken via the use of an enantiopure solvent, which led to the formation of a globally homochiral surface.


Assuntos
Metais , Estereoisomerismo , Catálise
4.
Chem Commun (Camb) ; 58(19): 3138-3141, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35171159

RESUMO

Nanoscopic lateral confinement created on a graphite surface enabled the study of embryonic stages of molecular self-assembly on solid surfaces using scanning tunneling microscopy performed at the solution/solid interface.

5.
ACS Appl Mater Interfaces ; 13(37): 44844-44859, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505760

RESUMO

New solid polymer electrolytes are of particular interest for next-generation high-energy batteries since they can overcome the limited voltage window of conventional polyether-based electrolytes. Herein, a flame-retardant phosphorus-containing polymer, poly(dimethyl(methacryloyloxy)methyl phosphonate) (PMAPC1) is introduced as a promising polymer matrix. Free-standing membranes are easily obtained by mixing PMAPC1 with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a small amount of acetonitrile (AN). LiTFSI/AN mixed aggregates are formed that act as plasticizers and enable ionic conductivities up to 1.6 × 10-3 S cm-1 at 100 °C. The high content of LiTFSI used in our electrolytes leads to the formation of a stable LiF solid-electrolyte interphase, which can effectively suppress Li dendrites and the chemical degradation of AN in contact with Li. Accordingly the electrolyte membranes exhibit a wide electrochemical stability window above 4.7 V versus Li+/Li and fire-retardant properties due to the presence of the phosphorus-containing polymer. Atomistic molecular modeling simulations have been performed to determine the structure of the electrolytes on the microscopic scale and to rationalize the trends in ionic conductivity and the transport regime as a function of the electrolyte composition. Finally, our electrolyte membranes enable stable cycling performance for LiFePO4|PMAPC1 + LiTFSI + AN|Li batteries.

6.
J Am Chem Soc ; 143(29): 11080-11087, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34283574

RESUMO

We report on the detection and stabilization of a previously unknown two-dimensional (2D) pseudopolymorph of an alkoxy isophthalic acid using lateral nanoconfinement. The self-assembled molecular networks formed by the isophthalic acid derivative were studied at the interface between covalently modified graphite and an organic solvent. When self-assembled on graphite with moderate surface coverage of covalently bound aryl groups, a previously unknown metastable pseudopolymorph was detected. This pseudopolymorph, which was presumably "trapped" in between the surface bound aryl groups, underwent a time-dependent phase transition to the stable polymorph typically observed on pristine graphite. The stabilization of the pseudopolymorph was then achieved by using an alternative nanoconfinement strategy, where the domains of the pseudopolymorph could be formed and stabilized by restricting the self-assembly in nanometer-sized shallow compartments produced by STM-based nanolithography carried out on a graphite surface with a high density of covalently bound aryl groups. These experimental results are supported by molecular mechanics and molecular dynamics simulations, which not only provide important insight into the relative stabilities of the different structures, but also shed light onto the mechanism of the formation and stabilization of the pseudopolymorph under nanoscopic lateral confinement.


Assuntos
Grafite/química , Nanoestruturas/química , Ácidos Ftálicos/análise , Simulação de Dinâmica Molecular , Estrutura Molecular
7.
Chem Commun (Camb) ; 57(12): 1454-1457, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33438693

RESUMO

A small percentage of an impurity was shown, via scanning tunneling microscopy, to drastically change the on-surface self-assembly behavior of an aromatic tetracarboxylic acid, by initiating the nucleation and growth of a different polymorph. Molecular modelling simulations were used to shed further light onto the dopant-controlled assembly behaviour.

8.
ACS Appl Mater Interfaces ; 12(39): 44017-44025, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880164

RESUMO

Humidity sensors have been gaining increasing attention because of their relevance for well-being. To meet the ever-growing demand for new cost-efficient materials with superior performances, graphene oxide (GO)-based relative humidity sensors have emerged recently as low-cost and highly sensitive devices. However, current GO-based sensors suffer from important drawbacks including slow response and recovery, as well as poor stability. Interestingly, reduced GO (rGO) exhibits higher stability, yet accompanied by a lower sensitivity to humidity due to its hydrophobic nature. With the aim of improving the sensing performances of rGO, here we report on a novel generation of humidity sensors based on a simple chemical modification of rGO with hydrophilic moieties, i.e., triethylene glycol chains. Such a hybrid material exhibits an outstandingly improved sensing performance compared to pristine rGO such as high sensitivity (31% increase in electrical resistance when humidity is shifted from 2 to 97%), an ultrafast response (25 ms) and recovery in the subsecond timescale, low hysteresis (1.1%), excellent repeatability and stability, as well as high selectivity toward moisture. Such highest-key-performance indicators demonstrate the full potential of two-dimensional (2D) materials when decorated with suitably designed supramolecular receptors to develop the next generation of chemical sensors of any analyte of interest.

9.
Chempluschem ; 84(9): 1270-1278, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944054

RESUMO

The preparation and characterisation of a novel three-dimensional organic material consisting of porphyrin arrays on carbon nanotubes embedded in an organogel is reported. Firstly, the porphyrin array was prepared through metal-ligand coordination of a ditopic ligand (1,2-bis(4-pyridyl)ethane) and two bis-Zn(II) porphyrins, linked through a pyrene core, and was studied through UV-Vis, NMR and diffusion spectroscopies. Secondly, the porphyrin supramolecular architecture was adsorbed on pristine carbon nanotubes, greatly improving the dispersibility of the latter in organic solvents. The hybrid material was characterised by means of UV-Vis spectroscopy, microscopic techniques and thermogravimetric analysis. Finally, by exploiting the anisotropic magnetic susceptibility of carbon nanotubes, the hybrid material was aligned under a magnetic field, the organisation of which could be maintained by in situ gelation. The resultant hybrid organogel exhibited notable optical anisotropy, suggesting an anisotropic arrangement of the porphyrin-CNTs architectures in the macroscopic material.

10.
J Am Chem Soc ; 140(47): 16062-16070, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30380853

RESUMO

We report the synthesis of a novel C3-symmetrical multiphotochromic molecule bearing three azobenzene units at positions 1, 3, 5 of the central phenyl ring. The unique geometrical design of such a rigid scaffold enables the electronic decoupling of the azobenzene moieties to guarantee their simultaneous isomerization. Photoswitching of all azobenzenes in solution was demonstrated by means of UV-vis absorption spectroscopy and high performance liquid chromatography (HPLC) analysis. Scanning tunneling microscopy investigations at the solid-liquid interface, corroborated by molecular modeling, made it possible to unravel the dynamic self-assembly of such systems into ordered supramolecular architectures, by visualizing and identifying the patterns resulting from three different isomers, thereby demonstrating that the multiphotochromism is retained when the molecules are confined in two dimensions.

11.
Nanoscale ; 9(45): 18075-18080, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29135011

RESUMO

The performance of organic nanostructures is closely related to the organization of the functional molecules. Frequently, molecular chirality plays a central role in the way molecules assemble at the supramolecular level. Herein we report the hierarchical self-assembly of benzo-fused tetrathia[7]helicenes on solid surfaces, from a single surface-bound molecule to well-defined microstructures, using a combination of various characterization techniques assisted by molecular modeling simulations. Similarities as well as discrepancies are revealed between homochiral and heterochiral aggregations by monitoring the hierarchical nucleation of helicenes on surfaces, where the impact of enantiopurity, concentration and adsorbate-substrate interaction on molecular organization are disclosed.

12.
Faraday Discuss ; 204: 215-231, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28840217

RESUMO

Chiral induction in self-assembled monolayers has garnered considerable attention in the recent past, not only due to its importance in chiral resolution and enantioselective heterogeneous catalysis but also because of its relevance to the origin of homochirality in life. Here, we demonstrate the emergence of homochirality in a supramolecular low-density network formed by achiral molecules at the interface of a chiral solvent and an atomically-flat achiral substrate. We focus on the impact of structure and functionality of the adsorbate and the chiral solvent on the chiral induction efficiency in self-assembled physisorbed monolayers, as revealed by scanning tunneling microscopy. Different induction mechanisms are proposed and evaluated, with the assistance of advanced molecular modeling simulations.

13.
Nat Commun ; 7: 11090, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052205

RESUMO

Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene-azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors.

14.
Nanoscale ; 5(10): 4205-16, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23467481

RESUMO

We study the mechanism of surface adsorption of organic dyes on graphene, and successive exfoliation in water of these dye-functionalized graphene sheets. A systematic, comparative study is performed on pyrenes functionalized with an increasing number of sulfonic groups. By combining experimental and modeling investigations, we find an unambiguous correlation between the graphene-dye interaction energy, the molecular structure and the amount of graphene flakes solubilized. The results obtained indicate that the molecular dipole is not important per se, but because it facilitates adsorption on graphene by a "sliding" mechanism of the molecule into the solvent layer, facilitating the lateral displacement of the water molecules collocated between the aromatic cores of the dye and graphene. While a large dipole and molecular asymmetry promote the adsorption of the molecule on graphene, the stability and pH response of the suspensions obtained depend on colloidal stabilization, with no significant influence of molecular charging and dipole.

15.
Nanoscale ; 5(2): 634-45, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23223852

RESUMO

Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.


Assuntos
Compostos Azo/química , Nanotubos de Carbono/química , Polímeros/química , Temperatura Alta , Cinética , Teste de Materiais , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Químicos , Conformação Molecular , Compostos Orgânicos/química , Fotoquímica/métodos , Solubilidade , Solventes/química , Propriedades de Superfície , Termogravimetria/métodos , Raios Ultravioleta , Raios X
16.
Chirality ; 24(2): 155-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22180286

RESUMO

This article describes a study of the outcome of racemate condensation in different types of monolayers. The study was performed on a resorcinol surfactant bearing an octadecyl chain and a lactate group which formed a monolayer at the interface of graphite and 1-phenyloctane as well as a Langmuir film at the air-water interface. Control experiments with the enantiopure materials provided the characteristics of the chiral organizations. The results obtained on the racemate show that on graphite the molecule forms chiral domains, indicating that spontaneous resolution takes place at the surface, a phenomenon that has been rationalized using molecular modeling. The X-ray crystal structure of the DMSO solvate of one of the enantiomers shows a similar type of packing to this monolayer. On the other hand, in the Langmuir layer it appears that the formation of a racemic compound is favoured, as it is in the solid state in three dimensions. The work shows how the symmetry restrictions in different environments can have a critical influence on the outcome of racemate organization, and underline the tendency of graphite to favour symmetry breaking in monolayers formed at its surface.

17.
Chem Commun (Camb) ; 47(39): 10924-6, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21909557

RESUMO

Molecular modeling simulations reveal the role of stereogenic centers in the formation of enantiomorphous surface-confined supramolecular rosette-like assemblies in monolayers of oligophenylene vinylene oligomers adsorbed at the graphite/solvent interface.

18.
J Am Chem Soc ; 133(39): 15412-24, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21830817

RESUMO

A H-bond-driven, noncovalent, reversible solubilization/functionalization of multiwalled carbon nanotubes (MWCNTs) in apolar organic solvents (CHCl(3), CH(2)Cl(2), and toluene) has been accomplished through a dynamic combination of self-assembly and self-organization processes leading to the formation of supramolecular polymers, which enfold around the outer wall of the MWCNTs. To this end, a library of phenylacetylene molecular scaffolds with complementary recognition sites at their extremities has been synthesized. They exhibit triple parallel H-bonds between the NH-N-NH (DAD) functions of 2,6-di(acetylamino)pyridine and the CO-NH-CO (ADA) imidic groups of uracil derivatives. These residues are placed at 180° relative to each other (linear systems) or at 60°/120° (angular modules), in order to tune their ability of wrapping around MWCNTs. Molecular Dynamics (MD) simulations showed that the formation of the hybrid assembly MWCNT•[X•Y](n) (where X = 1a or 1b -DAD- and Y = 2, 3, or 4 -ADA-) is attributed to π-π and CH-π interactions between the graphitic walls of the carbon materials and the oligophenyleneethynylene polymer backbones along with its alkyl groups, respectively. Addition of polar or protic solvents, such as DMSO or MeOH, causes the disruption of the H-bonds with partial detachment of the polymer from the CNTs, followed by precipitation. Taking advantage of the chromophoric and luminescence properties of the molecular subunits, the solubilization/precipitation processes have been monitored by UV-vis absorption and luminescence spectroscopies. All hybrid MWCNTs-polymer materials have been also structurally characterized via thermogravimetric analysis (TGA), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS).

19.
Macromol Rapid Commun ; 31(16): 1427-34, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21567546

RESUMO

New functionalized poly(3-hexylthiophene)s (P3HT) have been designed and synthesized with the aim of increasing the dispersion of carbon nanotubes (CNT) in solutions and in thin films of semiconducting polymers. Dispersion in solution has been assessed by sedimentation tests while the thin film morphology has been analyzed by TEM and AFM. Both the physisorption of P3HT chains (via pyrene end-groups) or their chemical grafting (onto amine functions generated on the CNT surface) lead to a much better dispersion in solution and in the solid. In thin films, P3HT fibrils are observed to arrange perpendicular to the CNT surface, which can be understood on the basis of molecular modeling simulations. Finally, the effect of dispersing those P3HT/CNT nanocomposites in bulk-heterojunction P3HT-based photovoltaic devices has been evaluated.

20.
J Am Chem Soc ; 131(17): 6246-52, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19361165

RESUMO

The supramolecular organization of a new polychlorotriphenyl (PTM) radical bearing three long alkyl chains has been studied by scanning tunneling microscopy (STM) at the liquid-solid interface. This radical hierarchically self-assembles on graphite forming head-to-head dimers that organize in rows following an interesting spin-containing two-leg molecular ladder topology, in which the alkyl chains determine the space between the radical rows and act as diamagnetic barriers. In addition, these double-rows also self-assemble three-dimensionally, leading to a multilayer organization which is still influenced by the HOPG substrate symmetry. The observed nanostructures are sustained by different intermolecular interactions such as Cl...Cl, Cl...Ph, pi-pi, van der Waals, and CH...pi interactions. Theoretical calculations were used to model the observed assemblies, and the results were in complete agreement with the experimental data. Remarkably, atomic force microscopy (AFM) studies confirmed that this tendency to form double rows composed by the PTM magnetic heads surrounded by the alkyl chains is maintained after the complete evaporation of the solvent. The electrochemical and magnetic properties of these PTM nanostructures were also demonstrated.


Assuntos
Compostos de Policloroterfenilo/química , Eletroquímica , Radicais Livres/síntese química , Radicais Livres/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Magnetismo , Microscopia de Força Atômica , Microscopia de Tunelamento , Conformação Molecular , Nanoestruturas/química , Tamanho da Partícula , Compostos de Policloroterfenilo/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...