Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Emerg Infect Dis ; 28(12): 2528-2533, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36417964

RESUMO

We detected arenavirus RNA in 1.6% of 1,047 bats in Brazil that were sampled during 2007-2011. We identified Tacaribe virus in 2 Artibeus sp. bats and a new arenavirus species in Carollia perspicillata bats that we named Tietê mammarenavirus. Our results suggest that bats are an underrecognized arenavirus reservoir.


Assuntos
Arenavirus , Quirópteros , Animais , Arenavirus/genética , Brasil/epidemiologia
2.
Front Microbiol ; 13: 1040093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386719

RESUMO

Hemorrhagic fever viruses (HFVs) pose a threat to global public health owing to the emergence and re-emergence of highly fatal diseases. Viral hemorrhagic fevers (VHFs) caused by these viruses are mostly characterized by an acute febrile syndrome with coagulation abnormalities and generalized hemorrhage that may lead to life-threatening organ dysfunction. Currently, the events underlying the viral pathogenicity associated with multiple organ dysfunction syndrome still underexplored. In this minireview, we address the current knowledge of the mechanisms underlying VHFs pathogenesis and discuss the available development of preventive and therapeutic options to treat these infections. Furthermore, we discuss the potential of HFVs to cause worldwide emergencies along with factors that favor their spread beyond their original niches.

3.
J Neurochem ; 163(2): 113-132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880385

RESUMO

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Assuntos
COVID-19 , Animais , Astrócitos , Carbono , Cricetinae , Modelos Animais de Doenças , Glucose , Glutamina , Ácidos Cetoglutáricos , Mesocricetus , Piruvatos , SARS-CoV-2
4.
Photochem Photobiol Sci ; 21(11): 1915-1929, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35864345

RESUMO

As part of efforts to combat the Covid-19 pandemic and decrease the high transmissibility of the new coronavirus, SARS-CoV-2, effective inactivation strategies, such as UV-C decontamination technologies, can be reliably disseminated and well-studied. The present study investigated the susceptibility of a high viral load of SARS-CoV-2 in filtering facepiece respirators (FFR) N95, surgical mask, cotton fabric mask and N95 straps under three different doses of UV-C, applying both real-time PCR (qPCR) and plaque formation assays to quantify viral load reduction and virus infectivity, respectively. The results show that more than 95% of the amount of SARS-CoV-2 RNA could be reduced after 10 min of UV-C exposure (0.93 J cm-2 per side) in FFR N95 and surgical masks and, after 5 min of UV-C treatment (0.46 J cm-2 per side) in fabric masks. Furthermore, the analysis of viable coronaviruses after these different UV-C treatments demonstrated that the lowest applied dose is sufficient to decontaminate all masks ([Formula: see text] 3-log10 reduction of the infective viral load, > 99.9% reduction). However, for the elastic strap of N95 respirators, a UV-C dose three times greater than that used in masks (1.4 J cm-2 per side) is required. The findings suggest that the complete decontamination of masks can be performed effectively and safely in well-planned protocols for pandemic crises or as strategies to reduce the high consumption and safe disposal of these materials in the environment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Máscaras , Respiradores N95 , COVID-19/prevenção & controle , RNA Viral , Descontaminação/métodos
5.
PeerJ ; 10: e13470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651746

RESUMO

Chagas disease is a life-threatening illness caused by the parasite Trypanosoma cruzi. The diagnosis of the acute form of the disease is performed by trained microscopists who detect parasites in blood smear samples. Since this method requires a dedicated high-resolution camera system attached to the microscope, the diagnostic method is more expensive and often prohibitive for low-income settings. Here, we present a machine learning approach based on a random forest (RF) algorithm for the detection and counting of T. cruzi trypomastigotes in mobile phone images. We analyzed micrographs of blood smear samples that were acquired using a mobile device camera capable of capturing images in a resolution of 12 megapixels. We extracted a set of features that describe morphometric parameters (geometry and curvature), as well as color, and texture measurements of 1,314 parasites. The features were divided into train and test sets (4:1) and classified using the RF algorithm. The values of precision, sensitivity, and area under the receiver operating characteristic (ROC) curve of the proposed method were 87.6%, 90.5%, and 0.942, respectively. Automating image analysis acquired with a mobile device is a viable alternative for reducing costs and gaining efficiency in the use of the optical microscope.


Assuntos
Telefone Celular , Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Doença de Chagas/diagnóstico , Curva ROC
6.
PLoS One ; 17(1): e0261853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025926

RESUMO

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is a transparent and accessible qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that direct RT-PCR assay methods can be clearly translated across sites utilizing readily available equipment and expertise and are thus a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa/genética , SARS-CoV-2/genética , COVID-19/virologia , Estudos de Viabilidade , Humanos , Nasofaringe/virologia , Pandemias/prevenção & controle , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Manejo de Espécimes/métodos
7.
J Glob Antimicrob Resist ; 28: 84-89, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34929377

RESUMO

OBJECTIVES: Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects approximately 6-7 million people worldwide. There are limited available therapies and they exhibit low efficacy, often high toxicity in chronic cases and some drug resistance. In this study, our objective was to develop ester prodrugs that inhibit proline racemase (TcPRAC), a parasitic enzyme previously identified and characterised as a promising target because of its essential role in the parasite's life cycle and virulence, and to test their activity against T. cruzi. METHODS: Using structural bioinformatics, we modelled several functional intermediates of the catalytic site between the opened and closed conformations of TcPRAC based on its crystal structures in complex with its competitive inhibitor, pyrrole-2-carboxylic acid. Guided by these intermediates, which were later validated in cocrystals, we designed and evaluated numerous compounds and tested them enzymatically on live parasites and in mice with our quick and straightforward drug screening method, which is based on state-of-the-art bioluminescent T. cruzi parasites injected subcutaneously. RESULTS: Some of our novel compounds specifically inhibited racemase activity, as determined through biochemical assays, and covalently bound to TcPRAC. Furthermore, the corresponding ester prodrugs were effective in killing parasites in vitro. Bioluminescent T. cruzi assays in mice showed that JR1531, a TcPRAC inhibitor prodrug, can kill parasites in living animals, with boosted action when combined with low doses of benznidazole. CONCLUSION: This approach, based on TcPRAC inhibitor prodrugs in association with low doses of benznidazole, may lead to more effective, specific and non-toxic therapies against Chagas disease.


Assuntos
Doença de Chagas , Parasitos , Pró-Fármacos , Trypanosoma cruzi , Isomerases de Aminoácido , Animais , Doença de Chagas/tratamento farmacológico , Ésteres/farmacologia , Ésteres/uso terapêutico , Humanos , Camundongos , Nitroimidazóis , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
8.
Chem Biol Drug Des ; 99(4): 513-526, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918458

RESUMO

Proline racemases (PRAC), catalyzing the l-proline and d-proline interconversion, are essential factors in eukaryotic pathogens such as Trypanosoma cruzi, Trypanosoma vivax, and Clostridioides difficile. If the discovery of irreversible inhibitors of T. cruzi PRAC (TcPRAC) led to innovative therapy of the Chagas disease, no inhibitors of CdPRAC have been discovered to date. However, C. difficile, due to an increased incidence in recent years, is considered as a major cause of health threat. In this work, we have taken into account the similarity between TcPRAC and CdPRAC enzymes to design new inhibitors of CdPRAC. Starting from (E) 4-oxopent-2-enoic acid TcPRAC irreversible inhibitors, we synthesized 4-aryl substituted analogs and evaluated their CdPRAC enzymatic inhibition against eleven strains of C. difficile. This study resulted in promising candidates and allowed for identification of (E)-4-(3-bromothiophen-2-yl)-4-oxobut-2-enoic acid 20 that was chosen for complementary in vivo studies and did not reveal in vivo toxicity.


Assuntos
Isomerases de Aminoácido , Antibacterianos , Clostridioides difficile , Isomerases de Aminoácido/antagonistas & inibidores , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Prolina
9.
Front Med (Lausanne) ; 8: 760170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901074

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is caused by a respiratory virus with a wide range of manifestations, varying from asymptomatic to fatal cases, with a generally short outcome. However, some individuals present long-term viral shedding. We monitored 38 individuals who were mildly affected by the SARS-CoV-2 infection. Out of the total studied population, three (7.9%) showed atypical events regarding the duration of positivity for viral RNA detection. In one of these atypical cases, a previously HIV-positive male patient presented a SARS-CoV-2 RNA shedding and subgenomic RNA (sgRNA) detected from the upper respiratory tract, respectively, for 232 and 224 days after the onset of the symptoms. The SARS-CoV-2 B.1.1.28 lineage, one of the most prevalent in Brazil in 2020, was identified in this patient in three serial samples. Interestingly, the genomic analyses performed throughout the infectious process showed an increase in the genetic diversity of the B.1.1.28 lineage within the host itself, with viral clearance occurring naturally, without any intervention measures to control the infection. Contrasting widely spread current knowledge, our results indicate that potentially infectious SARS-CoV-2 virus might be shed by much longer periods by some infected patients. This data call attention to better adapted non-pharmacological measures and clinical discharge of patients aiming at preventing the spread of SARS-CoV-2 to the population.

10.
medRxiv ; 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33880478

RESUMO

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is an open-access qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that open-access, direct RT-PCR assays are a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.

11.
Sci Rep ; 11(1): 9026, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907239

RESUMO

The use of RT-LAMP (reverse transcriptase-loop mediated isothermal amplification) has been considered as a promising point-of-care method to diagnose COVID-19. In this manuscript we show that the RT-LAMP reaction has a sensitivity of only 200 RNA virus copies, with a color change from pink to yellow occurring in 100% of the 62 clinical samples tested positive by RT-qPCR. We also demonstrated that this reaction is 100% specific for SARS-CoV-2 after testing 57 clinical samples infected with dozens of different respiratory viruses and 74 individuals without any viral infection. Although the majority of manuscripts recently published using this technique describe only the presence of two-color states (pink = negative and yellow = positive), we verified by naked-eye and absorbance measurements that there is an evident third color cluster (orange), in general related to positive samples with low viral loads, but which cannot be defined as positive or negative by the naked eye. Orange colors should be repeated or tested by RT-qPCR to avoid a false diagnostic. RT-LAMP is therefore very reliable for samples with a RT-qPCR Ct < 30 being as sensitive and specific as a RT-qPCR test. All reactions were performed in 30 min at 65 °C. The use of reaction time longer than 30 min is also not recommended since nonspecific amplifications may cause false positives.


Assuntos
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/metabolismo , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Colorimetria , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação , Carga Viral
12.
Int J Infect Dis ; 105: 579-587, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33713813

RESUMO

BACKGROUND: The progression and severity of COVID-19 vary significantly in the population. While the hallmarks of SARS-CoV-2 and severe COVID-19 within routine laboratory parameters are emerging, the impact of sex and age on these profiles is still unknown. METHODS: A multidimensional analysis was performed involving millions of records of laboratory parameters and diagnostic tests for 178 887 individuals from Brazil, of whom 33 266 tested positive for SARS-CoV-2. Analyzed data included those relating to complete blood cell count, electrolytes, metabolites, arterial blood gases, enzymes, hormones, cancer biomarkers, and others. FINDINGS: COVID-19 induced similar alterations in laboratory parameters in males and females. CRP and ferritin were increased, especially in older men with COVID-19, whereas abnormal liver function tests were common across several age groups, except for young women. Low peripheral blood basophils and eosinophils were more common in the elderly with COVID-19. Both male and female COVID-19 patients admitted to intensive care units displayed alterations in the coagulation system, and higher values for neutrophils, CRP, and lactate dehydrogenase. CONCLUSIONS: Our study uncovered the laboratory profiles of a large cohort of COVID-19 patients, which formed the basis of discrepancies influenced by aging and biological sex. These profiles directly linked COVID-19 disease presentation to an intricate interplay between sex, age, and immune activation.


Assuntos
COVID-19/sangue , Inflamação/etiologia , SARS-CoV-2 , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto Jovem
13.
Genomics ; 111(3): 407-417, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29499243

RESUMO

Trypanosoma vivax is a parasite widespread across Africa and South America. Immunological methods using recombinant antigens have been developed aiming at specific and sensitive detection of infections caused by T. vivax. Here, we sequenced for the first time the transcriptome of a virulent T. vivax strain (Lins), isolated from an outbreak of severe disease in South America (Brazil) and performed a computational integrated analysis of genome, transcriptome and in silico predictions to identify and characterize putative linear B-cell epitopes from African and South American T. vivax. A total of 2278, 3936 and 4062 linear B-cell epitopes were respectively characterized for the transcriptomes of T. vivax LIEM-176 (Venezuela), T. vivax IL1392 (Nigeria) and T. vivax Lins (Brazil) and 4684 for the genome of T. vivax Y486 (Nigeria). The results presented are a valuable theoretical source that may pave the way for highly sensitive and specific diagnostic tools.


Assuntos
Epitopos de Linfócito B/genética , Transcriptoma , Trypanosoma/genética , Animais , Epitopos de Linfócito B/imunologia , Cabras , Trypanosoma/imunologia
14.
PLoS Negl Trop Dis ; 12(10): e0006853, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30372428

RESUMO

Chagas disease, caused by Trypanosoma cruzi, affects millions of people in South America and no satisfactory therapy exists, especially for its life threatening chronic phase. We targeted the Proline Racemase of T. cruzi, which is present in all stages of the parasite life cycle, to discover new inhibitors against this disease. The first published crystal structures of the enzyme revealed that the catalytic site is too small to allow any relevant drug design. In previous work, to break through the chemical space afforded to virtual screening and drug design, we generated intermediate models between the open (ligand free) and closed (ligand bound) forms of the enzyme. In the present work, we co-crystallized the enzyme with the selected inhibitors and found that they were covalently bound to the catalytic cysteine residues in the active site, thus explaining why these compounds act as irreversible inhibitors. These results led us to the design of a novel, more potent specific inhibitor, NG-P27. Co-crystallization of this new inhibitor with the enzyme allowed us to confirm the predicted protein functional motions and further characterize the chemical mechanism. Hence, the catalytic Cys300 sulfur atom of the enzyme attacks the C2 carbon of the inhibitor in a coupled, regiospecific-stereospecific Michael reaction with trans-addition of a proton on the C3 carbon. Strikingly, the six different conformations of the catalytic site in the crystal structures reported in this work had key similarities to our intermediate models previously generated by inference of the protein functional motions. These crystal structures span a conformational interval covering roughly the first quarter of the opening mechanism, demonstrating the relevance of modeling approaches to break through chemical space in drug design.


Assuntos
Isomerases de Aminoácido/antagonistas & inibidores , Isomerases de Aminoácido/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Trypanosoma cruzi/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
15.
PLoS Negl Trop Dis ; 11(9): e0005924, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28945751

RESUMO

Visceral leishmaniasis is an insidious neglected disease with worldwide distribution. It is caused by parasites from the Leishmania donovani complex, which are able to be transmitted by different species of phlebotomine sand flies and to infect numerous mammal hosts. Despite the high number of people infected or at risk, and the remarkable quantity of studies focusing on this disease, a proper experimental model to efficiently decipher the infectious process of visceral leishmaniasis taking into account the nuances of parasite's virulence and the duration of the infection is still lacking. Therefore, using golden Syrian hamsters and BALB/c mice, state-of-the-art genetic manipulation applied on a fully virulent L. donovani strain and in vivo imaging approaches, we describe herein three benefits for experimental visceral leishmaniasis: (i) the development of a double transfected bioluminescent (firefly luciferase) and fluorescent (E2-crimson) virulent strain of L. donovani (Ld1S_luci_E2-crimson), favoring a wide range of both in vivo and in vitro investigations, (ii) the establishment of a non-invasive mouse model to evaluate the infectious process during visceral leishmaniasis and the parasite's virulence in real time, allowing longitudinal studies with the same animals, and (iii) the elaboration of a suitable method to reinstate (and verify anew) the virulence in a population of attenuated parasites, by recovering persistent parasites from chronic infected mice. Consequently, these results open up new perspectives on the study of visceral leishmaniasis, especially in the fields of therapeutics and vaccinology, since the model described herein renders now possible long-lasting follow up studies, with easy and accurate day-by-day verifications of the infection status along with a reduced number of laboratory animals. TRIAL REGISTRATION: ClinicalTrials.gov 2013-0047.


Assuntos
Leishmania donovani/patogenicidade , Leishmaniose Visceral/diagnóstico por imagem , Leishmaniose Visceral/parasitologia , Animais , Modelos Animais de Doenças , Humanos , Leishmania donovani/genética , Luciferases , Medições Luminescentes , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Inoculações Seriadas , Transfecção , Virulência
16.
Sci Rep ; 7(1): 8454, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814754

RESUMO

Visceral leishmaniasis (VL) is a systemic disease with multifaceted clinical manifestations, including neurological signs, however, the involvement of the nervous system during VL is underestimated. Accordingly, we investigated both brain infection and inflammation in a mouse model of VL. Using bioluminescent Leishmania donovani and real-time 2D-3D imaging tools, we strikingly detected live parasites in the brain, where we observed a compartmentalized dual-phased inflammation pattern: an early phase during the first two weeks post-infection, with the prompt arrival of neutrophils and Ly6Chigh macrophages in an environment presenting a variety of pro-inflammatory mediators (IFN-γ, IL-1ß, CXCL-10/CXCR-3, CCL-7/CCR-2), but with an intense anti-inflammatory response, led by IL-10; and a re-inflammation phase three months later, extremely pro-inflammatory, with novel upregulation of mediators, including IL-1ß, TNF-α and MMP-9. These new data give support and corroborate previous studies connecting human and canine VL with neuroinflammation and blood-brain barrier disruption, and conclusively place the brain among the organs affected by this parasite. Altogether, our results provide convincing evidences that Leishmania donovani indeed infects and inflames the brain.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Encefalite/parasitologia , Leishmania donovani/fisiologia , Leishmaniose/parasitologia , Animais , Infecções Protozoárias do Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Encefalite/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Leishmaniose/metabolismo , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Fatores de Tempo
17.
Parasitol Int ; 66(1): 933-939, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27794505

RESUMO

Characterizing the clinical, immunological and parasitological features associated with visceral leishmaniasis is complex. It involves recording in real time and integrating quantitative multi-parametric data sets from parasite infected host tissues. Although several models have been used, hamsters are considered the bona fide experimental model for Leishmania donovani studies. To study visceral leishmaniasis in hamsters we generated virulent transgenic L. donovani that stably express a reporter luciferase protein. Two complementary methodologies were combined to follow the infectious process: in vivo imaging using luciferase-expressing Leishmania and real time RT-PCR to quantify both Leishmania and host transcripts. This approach allows us: i) to assess the clinical outcome of visceral leishmaniasis by individual monitoring of hamster weight, ii) to follow the parasite load in several organs by real time analysis of the bioluminescence in vivo and through real time quantitative PCR analysis of amastigote parasite transcript abundance ex vivo, iii) to evaluate the immunological responses triggered by the infection by quantifying hamster transcripts on the same samples and iv) to limit the number of hamsters selected for further analysis. The overall data highlight a correlation between the transcriptional cytokine signatures of hamster affected tissues and the amastigote burden fluctuations, thus providing new insights into the immunopathological process driven by L. donovani in the tissues of mammalian hosts. Finally, they suggest organ-specific immune responses.


Assuntos
Interações Hospedeiro-Patógeno , Leishmania donovani/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Animais , Cricetinae , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Luciferases , Medições Luminescentes , Mesocricetus , Carga Parasitária , Reação em Cadeia da Polimerase em Tempo Real , Baço/parasitologia
18.
PLoS Negl Trop Dis ; 9(8): e0003975, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26266535

RESUMO

The parasitic flagellate Trypanosoma vivax is a cause of animal trypanosomiasis across Africa and South America. The parasite has a digenetic life cycle, passing between mammalian hosts and insect vectors, and a series of developmental forms adapted to each life cycle stage. Each point in the life cycle presents radically different challenges to parasite metabolism and physiology and distinct host interactions requiring remodeling of the parasite cell surface. Transcriptomic and proteomic studies of the related parasites T. brucei and T. congolense have shown how gene expression is regulated during their development. New methods for in vitro culture of the T. vivax insect stages have allowed us to describe global gene expression throughout the complete T. vivax life cycle for the first time. We combined transcriptomic and proteomic analysis of each life stage using RNA-seq and mass spectrometry respectively, to identify genes with patterns of preferential transcription or expression. While T. vivax conforms to a pattern of highly conserved gene expression found in other African trypanosomes, (e.g. developmental regulation of energy metabolism, restricted expression of a dominant variant antigen, and expression of 'Fam50' proteins in the insect mouthparts), we identified significant differences in gene expression affecting metabolism in the fly and a suite of T. vivax-specific genes with predicted cell-surface expression that are preferentially expressed in the mammal ('Fam29, 30, 42') or the vector ('Fam34, 35, 43'). T. vivax differs significantly from other African trypanosomes in the developmentally-regulated proteins likely to be expressed on its cell surface and thus, in the structure of the host-parasite interface. These unique features may yet explain the species differences in life cycle and could, in the form of bloodstream-stage proteins that do not undergo antigenic variation, provide targets for therapy.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Estágios do Ciclo de Vida/fisiologia , Proteínas de Protozoários/metabolismo , Transcriptoma , Trypanosoma vivax/fisiologia , Proteínas de Protozoários/genética , Especificidade da Espécie
19.
Parasit Vectors ; 8: 222, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25890302

RESUMO

BACKGROUND: Proline racemase (PRAC) enzymes of Trypanosoma cruzi (TcPRAC), the agent of Chagas disease, and Trypanosoma vivax (TvPRAC), the agent of livestock trypanosomosis, have been implicated in the B-cells polyclonal activation contributing to immunosuppression and the evasion of host defences. The similarity to prokaryotic PRAC and the absence in Trypanosoma brucei and Trypanosoma congolense have raised many questions about the origin, evolution, and functions of trypanosome PRAC (TryPRAC) enzymes. FINDINGS: We identified TryPRAC homologs as single copy genes per haploid genome in 12 of 15 Trypanosoma species, including T. cruzi and T. cruzi marinkellei, T. dionisii, T. erneyi, T. rangeli, T. conorhini and T. lewisi, all parasites of mammals. Polymorphisms in TcPRAC genes matched T. cruzi genotypes: TcI-TcIV and Tcbat have unique genes, while the hybrids TcV and TcVI contain TcPRACA and TcPRACB from parental TcII and TcIII, respectively. PRAC homologs were identified in trypanosomes from anurans, snakes, crocodiles, lizards, and birds. Most trypanosomes have intact PRAC genes. T. rangeli possesses only pseudogenes, maybe in the process of being lost. T. brucei, T. congolense and their allied species, except the more distantly related T. vivax, have completely lost PRAC genes. CONCLUSIONS: The genealogy of TryPRAC homologs supports an evolutionary history congruent with the Trypanosoma phylogeny. This finding, together with the synteny of PRAC loci, the relationships with prokaryotic PRAC inferred by taxon-rich phylogenetic analysis, and the absence in trypanosomatids of any other genera or in bodonids or euglenids suggest that a common ancestor of Trypanosoma gained PRAC gene by a single and ancient horizontal gene transfer (HGT) from a Firmicutes bacterium more closely related to Gemella and other species of Bacilli than to Clostridium as previously suggested. Our broad phylogenetic study allowed investigation of TryPRAC evolution over long and short timescales. TryPRAC genes diverged to become species-specific and genotype-specific for T. cruzi and T. rangeli, with resulting genealogies congruent with those obtained using vertically inherited genes. The inventory of TryPRAC genes described here is the first step toward the understanding of the roles of PRAC enzymes in trypanosomes differing in life cycles, virulence, and infection and immune evasion strategies.


Assuntos
Isomerases de Aminoácido/genética , Evolução Molecular , Firmicutes/genética , Transferência Genética Horizontal , Filogenia , Proteínas de Protozoários/genética , Trypanosoma/genética , Sequência de Aminoácidos , Firmicutes/enzimologia , Evasão da Resposta Imune , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sintenia , Trypanosoma/enzimologia , Trypanosoma/imunologia
20.
PLoS One ; 8(4): e60955, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613764

RESUMO

Chagas' disease is caused by Trypanosoma cruzi, a protozoan transmitted to humans by blood-feeding insects, blood transfusion or congenitally. Previous research led us to discover a parasite proline racemase (TcPRAC) and to establish its validity as a target for the design of new chemotherapies against the disease, including its chronic form. A known inhibitor of proline racemases, 2-pyrrolecarboxylic acid (PYC), is water-insoluble. We synthesized soluble pyrazole derivatives, but they proved weak or inactive TcPRAC inhibitors. TcPRAC catalytic site is too small and constrained when bound to PYC to allow efficient search for new inhibitors by virtual screening. Forty-nine intermediate conformations between the opened enzyme structure and the closed liganded one were built by calculating a transition path with a method we developed. A wider range of chemical compounds could dock in the partially opened intermediate active site models in silico. Four models were selected for known substrates and weak inhibitors could dock in them and were used to screen chemical libraries. Two identified soluble compounds, (E)-4-oxopent-2-enoic acid (OxoPA) and its derivative (E)-5-bromo-4-oxopent-2-enoic acid (Br-OxoPA), are irreversible competitive inhibitors that presented stronger activity than PYC on TcPRAC. We show here that increasing doses of OxoPA and Br-OxoPA hamper T. cruzi intracellular differentiation and fate in mammalian host cells. Our data confirm that through to their binding mode, these molecules are interesting and promising as lead compounds for the development of chemotherapies against diseases where active proline racemases play essential roles.


Assuntos
Isomerases de Aminoácido/antagonistas & inibidores , Doença de Chagas/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Tripanossomicidas/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Secundária de Proteína , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma cruzi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...