Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(44): 19553-19560, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32681561

RESUMO

The current energy transition presents many technological challenges, such as the development of highly stable catalysts. Herein, we report a novel "top-down" synthesis approach for preparation of a single-site Mo-containing nanosized ZSM-5 zeolite which has atomically dispersed framework-molybdenum homogenously distributed through the zeolite crystals. The introduction of Mo heals most of the native point defects in the zeolite structure resulting in an extremely stable material. The important features of this single-site Mo-containing ZSM-5 zeolite are provided by an in-depth spectroscopic and microscopic analysis. The material demonstrates superior thermal (up to 1000 °C), hydrothermal (steaming), and catalytic (converting methane to hydrogen and higher hydrocarbons) stability, maintaining the atomically disperse Mo, structural integrity of the zeolite, and preventing the formation of silanols.

2.
Angew Chem Int Ed Engl ; 59(10): 3922-3927, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31889397

RESUMO

Ni contamination from crude oil in the fluid catalytic cracking (FCC) process is one of the primary sources of catalyst deactivation, thereby promoting dehydrogenation-hydrogenation and speeding up coke growth. Herein, single-particle X-ray fluorescence, diffraction and absorption (µXRF-µXRD-µXAS) tomography is used in combination with confocal fluorescence microscopy (CFM) after thiophene staining to spatially resolve Ni interaction with catalyst components and study zeolite degradation, including the processes of dealumination and Brønsted acid sites distribution changes. The comparison between a Ni-lean particle, exposed to hydrotreated feedstock, and a Ni-rich one, exposed to non-hydrotreated feedstock, reveals a preferential interaction of Ni, found in co-localization with Fe, with the γ-Al2 O3 matrix, leading to the formation of spinel-type hotspots. Although both particles show similar surface zeolite degradation, the Ni-rich particle displays higher dealumination and a clear Brønsted acidity drop.

3.
J Am Chem Soc ; 141(22): 8689-8693, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117550

RESUMO

Direct evidence of the successful incorporation of atomically dispersed molybdenum (Mo) atoms into the framework of nanosized MFI zeolite is demonstrated for the first time. Homogeneous distribution of Mo with a size of 0.05 nm is observed by scanning transmission electron microscopy high-angle annular dark-field imaging (STEM-HAADF). 31P magic-angle spinning nuclear magnetic resonance (MAS NMR) and Fourier-transform infrared (FT-IR) spectroscopy, using trimethylphosphine oxide (TMPO) and deuterated acetonitrile as probe molecules, reveal a homogeneous distribution of Mo in the framework of MFI nanozeolite, and the presence of Lewis acidity. 31P MAS NMR using TMPO shows probe molecules interacting with isolated Mo atoms in the framework, and physisorbed probe molecules in the zeolite channels. Moreover, 2D 31P-31P MAS radio frequency-driven recoupling NMR indicates the presence of one type of Mo species in different crystallographic positions in the MFI framework. The substitution of framework Si by Mo significantly reduces the silanol defect content, making the resulting zeolite highly hydrophobic. In addition, the insertion of Mo into the MFI structure induces a symmetry lowering, from orthorhombic ( Pnma), typical of high silica MFI, to monoclinic ( P21/ n), as well as an expansion of unit cell volume. The novel material opens many opportunities of catalysts design for application in mature and emerging fields.

4.
Langmuir ; 34(47): 14134-14142, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30379547

RESUMO

A methodology for determining the micropore, mesopore, and external surface areas of hierarchical microporous/mesoporous materials from N2 adsorption isotherms at 77 K is described. For FAU-Y zeolites, the microporous surface area calculated using the Rouquerol criterion and the Brunauer-Emmett-Teller (BET) equation is in accord with the geometrical surface determined by the chord length distribution method. Therefore, BET surface area ( SBET) is the well representative of micropore surface areas of microporous materials and of total surface area of microporous/mesoporous materials. Mechanical mixtures of mesoporous MCM-41 and microporous FAU-Y powders of known surface areas were used to calculate the respective surface areas by weighted linear combination and the results were compared to the values obtained by the t-plot method. The first slope of the t-plot determined the mesopore and external surface areas ( Smes+ext). The linear fit of the first slope is in general in the range 0.01 < p/ p0 < 0.17 and contains the volumes and relative pressures at which all micropores are filled ( p/ p0 > 0.10). Overestimation of Smes+ext values was evident and appropriate corrections were provided. External surface areas ( Sext) were obtained from the second slope of the t-plot, without noting an overestimation of Sext, thus allowing the determination of mesopore surface areas ( Smes) by difference. Micropore surface areas were calculated by subtracting Smes+ext from the total surface area, SBET. As an example, this methodology was applied to characterize a family of hierarchical microporous/mesoporous FAU-Y (FAUmes) synthesized from H-FAU-Y (H-Y, Si/Al = 15) using C18TAB as the surfactant and different NaOH/Si ratios (0.05 < NaOH/Si < 0.25). By increasing the NaOH/Si ratio in the synthesis of FAUmes, it was shown that as the micropore surface area decreases, the mesopore surface area increases, whereas the micropore and mesopore surface area remains constant. This methodology allows accurate characterization of the surface areas of microporous/mesoporous materials.

5.
Langmuir ; 34(38): 11414-11423, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30188140

RESUMO

The texture of mesoporous FAU-Y (FAUmes) prepared by surfactant-templating in basic media is a subject of debate. It is proposed that mesoporous FAU-Y consists of: (1) ordered mesoporous zeolite networks formed by a surfactant-assisted zeolite rearrangement process involving local dissolution and reconstruction of the crystalline framework, and (2) ordered mesoporous amorphous phases as Al-MCM-41, which coexist with zeolite nanodomains obtained by a dissolution-reassembly process. By the present systematic study, performed with FAU-Y (Si/Al = 15) in the presence of octadecyltrimethylammonium bromide and 0 < NaOH/Si ratio < 0.25 at 115 °C for 20 h, we demonstrate that mesoporous FAU zeolites consist, in fact, of a complex family of materials with textural features strongly impacted by the experimental conditions. Two main families have been disclosed: (1) for 0.0625 < NaOH/Si < 0.10, FAUmes are ordered mesoporous materials with zeolite walls, which coexist with zeolite nanodomains (100-200 nm) and (2) for 0.125 < NaOH/Si < 0.25, FAUmes are ordered mesoporous materials with amorphous walls as Al-MCM-41, which coexist with zeolite nanodomains (5-100 nm). The zeolite nanodomains decrease in size with the increase of NaOH/Si ratio. Increasing NaOH/Si ratio leads to an increase of mesopore volume, while the total surface area remains constant, and to a decrease of strong acidity in line with the decrease of micropore volume. The ordered mesoporous materials with zeolite walls feature the highest acidity strength. The ordered mesoporous materials with amorphous walls present additional large pores (50-200 nm), which increase in size and amount with the increase of NaOH/Si ratio. This alkaline treatment of FAU-Y represents a way to obtain ordered mesoporous materials with zeolite walls with high mesopore volume for NaOH/Si = 0.10 and a new way to synthesize mesoporous Al-MCM-41 materials containing extralarge pores (50-200 nm) ideal for optimal diffusion (NaOH/Si = 0.25).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...