Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 187: 66-75, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34246677

RESUMO

Loxoscelism is the most dangerous araneism form in Brazil and antivenom therapy is the recommended treatment. Antivenom is produced by horse immunization with Loxosceles spider venom, which is toxic for the producer animal. Moreover, due to the high amount of venom required for horse hyperimmunization, new strategies for antigens obtention have been proposed. In this sense, our research group has previously produced a non-toxic recombinant multiepitopic protein derived from Loxosceles toxins (rMEPLox). rMEPLox was a successful immunogen, being able to induce the production of neutralizing antibodies, which could be used in the Loxoscelism treatment. However, rMEPLox obtention procedure requires optimization, as its production needs to be scaled up to suit antivenom manufacture. Therefore, an effective protocol development for rMEPlox production would be advantageous. To achieve this objective, we evaluated the influence of different cultivation conditions for rMEPLox optimum expression. The optimum conditions to obtain large amounts of rMEPlox were defined as the use of C43(DE3)pLysS as a host strain, 2xTY medium, 0.6 mM IPTG, biomass pre induction of OD600nm = 0.4 and incubation at 30 °C for 16 h. Following the optimized protocol, 39.84 mg/L of soluble rMEPLox was obtained and tested as immunogen. The results show that the obtained rMEPLox preserved the previously described immunogenicity, and it was able to generate antibodies that recognize different epitopes of the main Loxosceles venom toxins, which makes it a promising candidate for the antivenom production for loxoscelism treatment.


Assuntos
Escherichia coli , Expressão Gênica , Aranhas/genética , Animais , Antivenenos/biossíntese , Antivenenos/genética , Antivenenos/imunologia , Antivenenos/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos Endogâmicos BALB C , Diester Fosfórico Hidrolases/biossíntese , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/imunologia , Diester Fosfórico Hidrolases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Venenos de Aranha/biossíntese , Venenos de Aranha/genética , Venenos de Aranha/imunologia , Venenos de Aranha/isolamento & purificação
2.
Int J Biol Macromol ; 162: 490-500, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574737

RESUMO

Loxoscelism pose a health issue in the South America. The treatment for these accidents is based on the administration of antivenom produced in animals immunized with Loxosceles venom. In this work, a previously produced non-toxic multiepitopic chimeric protein (rMEPlox), composed of epitopes derived from the main toxins families (sphyngomielinase-D, metalloproteases, and hyaluronidases) of Loxosceles spider venoms, was used as antigen to produce monoclonal antibodies (mAbs). A selected anti-rMEPlox mAb (Lox-mAb3) reacted with metalloprotease from L. intermedia venom and showed cross-reactivity with metalloproteses from Brazilian and Peruvian Loxosceles laeta and Loxosceles gaucho venoms in immunoassays. The sequence recognized by Lox-mAb3 (184ENNTRTIGPFDYDSIMLYGAY205) corresponds to the C-terminal region of Astacin-like metalloprotease 1 and the amino acid sequence IGPFDYDSI, conserved among the homologs metalloproteases sequences, is important for antibody recognition. Lox-mAb3 neutralizes the fibrinogenolytic activity caused by metalloprotease from L. intermedia spider venom in vitro, which may lead to a decrease in hemorrhagic disturbances caused by Loxosceles envenomation. Our results show, for the first time, the use of a non-toxic multiepitopic protein for the production of a neutralizing monoclonal antibody against a metalloprotease of medically important Loxosceles venoms. These results contribute for the production improvement of therapeutic antivenom against loxoscelism.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas de Artrópodes , Epitopos , Metaloendopeptidases , Diester Fosfórico Hidrolases , Venenos de Aranha , Aranhas , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Metaloendopeptidases/química , Metaloendopeptidases/genética , Metaloendopeptidases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/imunologia , Engenharia de Proteínas , Venenos de Aranha/química , Venenos de Aranha/genética , Venenos de Aranha/imunologia
3.
Front Immunol ; 9: 653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666624

RESUMO

Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito B/imunologia , Diester Fosfórico Hidrolases/imunologia , Venenos de Aranha/imunologia , Animais , Feminino , Imunização , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes/imunologia
4.
Toxicon ; 86: 59-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24878371

RESUMO

A chimeric protein (rCpLi) was constructed expressing three epitopes of rLiD1, a dermonecrotic toxin from the venom of Loxosceles intermedia spider. We have analyzed the neutralization potential of sera obtained by immunization of horses with rCpLi and rCpLi combined with initial doses of venoms and compared these with antivenom traditionally produced in horses using crude Loxosceles gaucho, Loxosceles laeta and L. intermedia venoms as antigens. We have demonstrated by ELISA that horses immunized with three initial doses of crude venom containing mixtures of L. intermedia, L. gaucho and L. laeta followed by nine doses of rCpLi generate antibodies with the same reactivity as those produced following immunization with traditional antivenom, towards the venoms of the three Loxosceles sp. species. Results from in vivo and in vitro neutralization assays showed that the new horse sera are able to neutralize the dermonecrotic activity of Loxosceles venoms, which are of medical importance in Brazil and some of these sera are capable of meeting the necessary potency requirements that could allow for their therapeutic use in humans. This immunization strategy combining both antigens used approximately 67% less crude Loxosceles venoms compared to traditional immunization protocol and can mean the development of Loxosceles antivenoms with the consequent reduction of devastation of arachnid fauna.


Assuntos
Antivenenos/biossíntese , Cavalos/imunologia , Diester Fosfórico Hidrolases/imunologia , Proteínas Recombinantes de Fusão/imunologia , Venenos de Aranha/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Imunização/métodos , Imunização/veterinária , Testes de Neutralização
5.
Appl Microbiol Biotechnol ; 90(2): 713-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21336685

RESUMO

A novel low-cost medium was developed from by-products and wastes from the ethanol agro-industry to replace commercial media in the production of a steam sterilization biological indicator (BI). Various recovery media were developed using soybean or sugarcane molasses and vinasse to prepare a self-contained BI. Media performance was evaluated by viability and heat resistance (D(121 °C) value) according to regulatory standards. A medium produced with a soybean vinasse ratio of 1:70 (1.4%) (w/v) produced the results, with D(121 °C)=2.9±0.5 min and Usk=12.7±2.1 min. The addition of 0.8% (w/v) yeast extract improved the germination of heat-damaged spores. The pH variation from 6.0 to 7.3 resulted in a gradual increase in the D(121 °C) value. The absence of calcium chloride resulted in a decrease in germination, while no significant differences were observed with starch addition. Soybean vinasses may thus be used as the main component of a culture medium to substitute for commercial media in the production of self-contained biological indicators. The use of ethanol production waste in this biotechnological process realized a reliable performance, minimized the environmental impact, and decreased BI production costs while producing a high quality product.


Assuntos
Meios de Cultura/química , Geobacillus stearothermophilus/crescimento & desenvolvimento , Glycine max/química , Esterilização , Meios de Cultura/metabolismo , Etanol/metabolismo , Geobacillus stearothermophilus/metabolismo , Temperatura Alta , Resíduos Industriais , Viabilidade Microbiana , Melaço , Glycine max/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento
6.
J Biomed Biotechnol ; 2006(5): 56087, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17489017

RESUMO

Human placental (hPLAP) and germ cell (PLAP-like) alkaline phosphatases are polymorphic and heat-stable enzymes. This study was designed to develop specific immunoassays for quantifying hPLAP and PLAP-like enzyme activity (EA) in sera of cancer patients, pregnant women, or smokers. Polyclonal sheep anti-hPLAP antibodies were purified by affinity chromatography with whole hPLAP protein (ICA-PLAP assay) or a synthetic peptide (aa 57-71) of hPLAP (ICA-PEP assay); the working range was 0.1-11 U/L and cutoff value was 0.2 U/L EA for nonsmokers. The intra- and interassay coefficients of variation were 3.7%-6.5% (ICA-PLAP assay) and 9.0%-9.9% (ICA-PEP assay). An insignificant cross-reactivity was noted for high levels of unheated intestinal alkaline phosphatase in ICA-PEP assay. A positive correlation between the regression of tumor size and EA was noted in a child with embryonal carcinoma. It can be concluded that ICA-PEP assay is more specific than ICA-PLAP, which is still useful to detect other PLAP/PLAP-like phenotypes.

7.
J Biomed Biotechnol ; 2004(3): 143-149, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15292580

RESUMO

Human growth hormone (hGH) signal transduction initiates with a receptor dimerization in which one molecule binds to the receptor through sites 1 and 2. A sandwich enzyme-linked immunosorbent assay was developed for quantifying hGH molecules that present helix 4 from binding site 1. For this, horse anti-rhGH antibodies were eluted by an immunoaffinity column constituted by sepharose-rhGH. These antibodies were purified through a second column with synthetic peptide correspondent to hGH helix 4, immobilized to sepharose, and used as capture antibodies. Those that did not recognize synthetic peptide were used as a marker antibody. The working range was of 1.95 to 31.25 ng/mL of hGH. The intra-assay coefficient of variation (CV) was between 4.53% and 6.33%, while the interassay CV was between 6.00% and 8.27%. The recovery range was between 96.0% to 103.8%. There was no cross-reactivity with human prolactin. These features show that our assay is an efficient method for the determination of hGH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...