Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260365

RESUMO

Only recently have human postmortem brain studies of differential gene expression (DGE) associated with opioid overdose death (OOD) been published; sample sizes from these studies have been modest (N = 40-153). To increase statistical power to identify OOD-associated genes, we leveraged human prefrontal cortex RNAseq data from four independent OOD studies and conducted a transcriptome-wide DGE meta-analysis (N = 285). Using a unified gene expression data processing and analysis framework across studies, we meta-analyzed 20 098 genes and found 335 significant differentially expressed genes (DEGs) by OOD status (false discovery rate < 0.05). Of these, 66 DEGs were among the list of 303 genes reported as OOD-associated in prior prefrontal cortex molecular studies, including genes/gene families (e.g., OPRK1, NPAS4, DUSP, EGR). The remaining 269 DEGs were not previously reported (e.g., NR4A2, SYT1, HCRTR2, BDNF). There was little evidence of genetic drivers for the observed differences in gene expression between opioid addiction cases and controls. Enrichment analyses for the DEGs across molecular pathway and biological process databases highlight an interconnected set of genes and pathways from orexin and tyrosine kinase receptors through MEK/ERK/MAPK signaling to affect neuronal plasticity.

2.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293028

RESUMO

Background: Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods: Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results: At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions: Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.

3.
Elife ; 122023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37092728

RESUMO

The functional maturation of neurons is a prolonged process that extends past the mitotic exit and is mediated by the chromatin-dependent orchestration of gene transcription programs. We find that expression of this maturation gene program in mouse cerebellar granule neurons (CGNs) requires dynamic changes in the genomic distribution of histone H3 lysine 27 trimethylation (H3K27me3), demonstrating a function for this chromatin modification beyond its role in cell fate specification. The developmental loss of H3K27me3 at promoters of genes activated as CGNs mature is facilitated by the lysine demethylase and ASD-risk gene, Kdm6b. Interestingly, inhibition of the H3K27 methyltransferase EZH2 in newborn CGNs not only blocks the repression of progenitor genes but also impairs the induction of mature CGN genes, showing the importance of bidirectional H3K27me3 regulation across the genome. These data demonstrate that H3K27me3 turnover in developing postmitotic neurons regulates the temporal coordination of gene expression programs that underlie functional neuronal maturation.


Assuntos
Histonas , Lisina , Animais , Camundongos , Histonas/metabolismo , Lisina/metabolismo , Cromatina , Diferenciação Celular/genética , Neurônios/metabolismo
4.
Front Pharmacol ; 13: 980747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278238

RESUMO

Current computational technologies hold promise for prioritizing the testing of the thousands of chemicals in commerce. Here, a case study is presented demonstrating comparative risk-prioritization approaches based on the ratio of surrogate hazard and exposure data, called margins of exposure (MoEs). Exposures were estimated using a U.S. EPA's ExpoCast predictive model (SEEM3) results and estimates of bioactivity were predicted using: 1) Oral equivalent doses (OEDs) derived from U.S. EPA's ToxCast high-throughput screening program, together with in vitro to in vivo extrapolation and 2) thresholds of toxicological concern (TTCs) determined using a structure-based decision-tree using the Toxtree open source software. To ground-truth these computational approaches, we compared the MoEs based on predicted noncancer TTC and OED values to those derived using the traditional method of deriving points of departure from no-observed adverse effect levels (NOAELs) from in vivo oral exposures in rodents. TTC-based MoEs were lower than NOAEL-based MoEs for 520 out of 522 (99.6%) compounds in this smaller overlapping dataset, but were relatively well correlated with the same (r 2 = 0.59). TTC-based MoEs were also lower than OED-based MoEs for 590 (83.2%) of the 709 evaluated chemicals, indicating that TTCs may serve as a conservative surrogate in the absence of chemical-specific experimental data. The TTC-based MoE prioritization process was then applied to over 45,000 curated environmental chemical structures as a proof-of-concept for high-throughput prioritization using TTC-based MoEs. This study demonstrates the utility of exploiting existing computational methods at the pre-assessment phase of a tiered risk-based approach to quickly, and conservatively, prioritize thousands of untested chemicals for further study.

5.
Toxicol In Vitro ; 48: 310-317, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29391263

RESUMO

An evolving regulatory, scientific, and legislative landscape is driving a fundamental change in how chemical safety decisions are made. As we move to implement changes, regulatory agencies and industry are beginning to adopt tiered approaches, which leverage high-throughput screening technologies for prioritization and read across, followed by interrogation of "hit chemicals" with more rigorous dose-response assessment either in fit-for-purpose human cell-based assays or with traditional in vivo tests. However, to date, suitable in vitro alternatives do not exist for the vast majority of the organ toxicities that form the basis of current regulatory decisions. To successfully support safety decisions, biologically relevant, quantitative, cell-based assays that evaluate dose-response and identify regions of safety for chemical exposure are required. This review evaluates the current state of the science in the development of such assays, identifies key gaps in the current tests, and recommends areas where research efforts may be focused to help move the risk assessment community towards more wide-spread use of in vitro methods. Our analysis suggests that a key shortcoming in the current efforts is the ability to test volatile compounds and to predict pulmonary toxicity. We present a mechanistically-based path forward for the development of a fit-for-purpose lung toxicity assay.


Assuntos
Medição de Risco/métodos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Animais , Regulamentação Governamental , Humanos , Técnicas In Vitro , Pneumopatias/induzido quimicamente , Pneumopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...