Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(47): eabp8747, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417529

RESUMO

Human activities have led to degradation of ecosystems globally. The lost ecosystem functions and services accumulate from the time of disturbance to the full recovery of the ecosystem and can be quantified as a "recovery debt," providing a valuable tool to develop better restoration practices that accelerate recovery and limit losses. Here, we quantified the recovery of faunal biodiversity and abundance toward a predisturbed state following structural restoration of oyster habitats globally. We found that while restoration initiates a rapid increase in biodiversity and abundance of reef-associated species within 2 years, recovery rate then decreases substantially, leaving a global shortfall in recovery of 35% below a predisturbed state. While efficient restoration methods boost recovery and minimize recovery shortfalls, the time to full recovery is yet to be quantified. Therefore, potential future coastal development should weigh up not only the instantaneous damage to ecosystem functions but also the potential for generational loss of services.

2.
Glob Chang Biol ; 28(19): 5781-5792, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35923070

RESUMO

With rising ocean temperatures, extreme weather events such as marine heatwaves (MHWs) are increasing in frequency and duration, pushing marine life beyond their physiological limits. The potential to respond to extreme conditions through physiological acclimatization, and pass on resistance to the next generation, fundamentally depends on the capacity of an organism to cope within their thermal tolerance limits. To elucidate whether heat conditioning of parents could benefit offspring development, we exposed adult sea urchins (Heliocidaris erythrogramma) to ambient summer (23°C), moderate (25°C) or strong (26°C) MHW conditions for 10 days. Offspring were then reared at constant temperature along a thermal gradient (22-28°C) and development was tracked to the 14-day juvenile stage. Progeny from the MHW-conditioned adults developed through to metamorphosis faster than those of ambient conditioned parents, with most individuals from the moderate and strong heatwaves developing to the larval stage across all temperatures. In contrast, the majority of offspring from the control summer temperature died before metamorphosis at temperatures above 25°C (moderate MHW). Juveniles produced from the strong MHW-conditioned adults were also larger across all temperatures, with the largest juveniles in the 26°C treatment. In contrast, the smallest juveniles were from control (current-day summer) parents (and reared at 22 and 25°C). Surprisingly, initial survival was higher in the progeny of MHW exposed parents, even at temperatures hotter than predicted MHWs (28°C). Importantly, however, there was substantial mortality of juveniles from the strong MHW parents by day 14. Therefore, while carryover effects of parental conditioning to MHWs resulted in faster growing, larger progeny, this benefit will only persist beyond the more sensitive juvenile stage and enhance survival if conditions return promptly to normal seasonal temperatures within current thermal tolerance limits.


Assuntos
Temperatura Alta , Ouriços-do-Mar , Animais , Humanos , Estações do Ano , Temperatura
3.
Sci Total Environ ; 785: 147281, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933766

RESUMO

Heatwaves are increasing in frequency and intensity, with substantial impacts on ecosystems and species which maintain their function. Whether or not species are harmed by heatwave conditions by being pushed beyond their physiological bounds can depend on whether energy replacement is sufficient to enable recovery from acute stress. We exposed an ecologically important sea urchin, Heliocidaris erythrogramma, to experimental marine heatwave scenarios in context with recent summer heat anomalies in moderate (25 °C), and strong heatwave (26 °C) conditions for 10 days, followed by a 10-day recovery period at normal summer temperature (23 °C). Greater heatwave intensity drove higher metabolic rates which were not matched with a concurrent increase in food consumption or faecal production. However, food consumption increased during the post-heatwave recovery period, likely to replenish an energy deficit. Despite this, mortality increased into the recovery period and seemed to be caused by latent effects, manifesting as a decline in health index as individuals progressed from spine and pedicellariae loss, through to loss of tube foot rigor, bald patch disease, culminating in mortality. We show for the first time that the acute thermal stress of heatwaves can have latent physiological effects that cause mortality even when conditions return to normal. Our results show that the negative effects of heatwaves can manifest after relief from stressful conditions and highlight the importance of understanding the latent effects on physiology and health. This understanding will offer insights into the long-term potential for stress recovery following seemingly sublethal effects and whether the restoration of ambient conditions post-heatwave is sufficient to ensure population stability.


Assuntos
Ecossistema , Ouriços-do-Mar , Animais , Humanos , Estações do Ano
4.
Mar Environ Res ; 162: 105117, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32866819

RESUMO

Marine heatwaves (MHWs) are an emerging threat to marine organisms that have increased in frequency and magnitude in the past decade. These extreme heating events can have differential impacts on organisms with some experiencing mortality while others survive. Here, we experimentally exposed two species of subtidal gastropod (Trochus sacellum and Astralium haematragum) to two realistic intensities of MHW to test the ability of different species to physiologically cope with extreme heating events. Extreme MHW conditions caused 100% mortality in both species within five days. While both species survived under moderate MHW conditions they showed evidence of nonadaptive metabolic depression. Both species demonstrated an inability to upregulate their metabolic rates at the higher temperatures following exposure to a MHW (i.e. reduced temperature of maximum metabolic rate; TMMR), suggesting a lack of molecular protective responses and ongoing physiological damage. Therefore, the physiological damage endured by heatwave survivors may lessen their ability to cope with subsequent stress until fully recovered. Repairing this damage may have serious repercussions for the rate of recovery of these normally resilient species and their ability to maintain their ecological functions post MHW, especially under the predicted increasing frequency, duration and magnitude of MHWs.


Assuntos
Gastrópodes , Animais , Organismos Aquáticos , Ecossistema , Humanos , Sobreviventes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...