Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 36(11): 2981-2990, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28519901

RESUMO

We investigated individual toxicities of the nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT); 2-amino-4,6-dinitrotoluene (2-ADNT); 4-amino-2,6-dinitrotoluene (4-ADNT); and nitroglycerin (NG) on microbial activity in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support very high qualitative relative bioavailability for organic chemicals. Batches of SSL soil for basal respiration (BR) and substrate-induced respiration (SIR) assays were separately amended with individual EMs or acetone carrier control. Total microbial biomass carbon (biomass C) was determined from CO2 production increases after addition of 2500 mg/kg of glucose-water slurry to the soil. Exposure concentrations of each EM in soil were determined using US Environmental Protection Agency method 8330A. Basal respiration was the most sensitive endpoint for assessing the effects of nitroaromatic EMs on microbial activity in SSL, whereas SIR and biomass C were more sensitive endpoints for assessing the effects of NG in soil. The orders of toxicity (from greatest to least) were 4-ADNT > 2,4-DNT = 2-ADNT > NG for BR; but for SIR and biomass C, the order of toxicity was NG > 2,4-DNT > 2-ADNT = 4-ADNT. No inhibition of SIR was found up to and including the greatest concentration of each ADNT tested in SSL. These ecotoxicological data will be helpful in identifying concentrations of contaminant EMs in soil that present acceptable ecological risks for biologically mediated processes in soil. Environ Toxicol Chem 2017;36:2981-2990. Published 2017 Wiley Periodicals Inc. on behalf of SETAC.This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Bactérias/efeitos dos fármacos , Compostos de Nitrogênio/toxicidade , Microbiologia do Solo , Biomassa , Respiração Celular/efeitos dos fármacos , Sassafras/efeitos dos fármacos , Solo/química , Poluentes do Solo/toxicidade , Testes de Toxicidade
2.
Environ Sci Technol ; 41(4): 1218-24, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17593722

RESUMO

Bacterial reduction of a hematite-rich natural coastal sand was studied in flow-through column reactors at flow rates which varied from 0.62 to 11 pore volumes d(-1). Sand columns were wet-packed with the dissimilatory metal-reducing bacterium (DMRB) Shewanella putrefaciens CN32, and a PIPES-buffered, lactate-containing growth medium was pumped through the columns for over 20 days. Soluble Fe(II), acetate and lactate concentrations measured in the column effluents showed that steady-state conditions were established after a few days with every flow rate. The steady-state effluent Fe(II) concentration was directly controlled by the flow rate where [Fe(II)]ss decreased as the flow rate increased. Increased flow rate increased biologic activity based on the steady-state flux of soluble Fe(II) and total Fe(II) production (included Fe(II) extracted from sand at the conclusion of the experiment), decreased the fraction of lactate oxidized for energy that likely increased cell synthesis, and decreased the concentration of sorbed Fe(II) that, in turn, decreased the relative percentage of Fe(II) retained by the column materials. Increased biologic activity was likely promoted by greater reactant delivery (i.e., lactate, N, P) and greater advective removal of Fe(II). These results demonstrate that biologic Fe(II) reduction, cell growth, and abiotic Fe(II) sorption are all coupled to the hydrologic flow rate.


Assuntos
Ferro/metabolismo , Shewanella putrefaciens/metabolismo , Movimentos da Água , Acetatos/metabolismo , Adsorção , Sedimentos Geológicos/química , Ferro/química , Ácido Láctico/metabolismo , Oxirredução , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...