Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Plant Biol ; 18(1): 216, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285622

RESUMO

BACKGROUND: Commercially available poinsettia (Euphorbia pulcherrima) varieties prevalently accumulate cyanidin derivatives and show intense red coloration. Orange-red bract color is less common. We investigated four cultivars displaying four different red hues with respect to selected enzymes and genes of the anthocyanin pathway, putatively determining the color hue. RESULTS: Red hues correlated with anthocyanin composition and concentration and showed common dark red coloration in cultivars 'Christmas Beauty' and 'Christmas Feeling' where cyanidin derivatives were prevalent. In contrast, orange-red bract color is based on the prevalent presence of pelargonidin derivatives that comprised 85% of the total anthocyanin content in cv. 'Premium Red' and 96% in cv. 'Harvest Orange' (synonym: 'Orange Spice'). cDNA clones of flavonoid 3'-hydroxylase (F3'H) and dihydroflavonol 4-reductase (DFR) were isolated from the four varieties, and functional activity and substrate specificity of the corresponding recombinant enzymes were studied. Kinetic studies demonstrated that poinsettia DFRs prefer dihydromyricetin and dihydroquercetin over dihydrokaempferol, and thus, favor the formation of cyanidin over pelargonidin. Whereas the F3'H cDNA clones of cultivars 'Christmas Beauty', 'Christmas Feeling', and 'Premium Red' encoded functionally active enzymes, the F3'H cDNA clone of cv. 'Harvest Orange' contained an insertion of 28 bases, which is partly a duplication of 20 bases found close to the insertion site. This causes a frameshift mutation with a premature stop codon after nucleotide 132 and, therefore, a non-functional enzyme. Heterozygosity of the F3'H was demonstrated in this cultivar, but only the mutated allele was expressed in the bracts. No correlation between F3'H-expression and the color hue could be observed in the four species. CONCLUSIONS: Rare orange-red poinsettia hues caused by pelargonidin based anthocyanins can be achieved by different mechanisms. F3'H is a critical step in the establishment of orange red poinsettia color. Although poinsettia DFR shows a low substrate specificity for dihydrokaempferol, sufficient precursor for pelargonidin formation is available in planta, in the absence of F3'H activity.


Assuntos
Códon sem Sentido , Sistema Enzimático do Citocromo P-450/genética , Euphorbia/genética , Proteínas de Plantas/genética , Oxirredutases do Álcool/genética , Antocianinas/genética , Antocianinas/metabolismo , Clonagem Molecular , Euphorbia/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Reação em Cadeia da Polimerase em Tempo Real
2.
Front Plant Sci ; 9: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541079

RESUMO

A recall campaign for commercial, orange flowering petunia varieties in spring 2017 caused economic losses worldwide. The orange varieties were identified as undeclared genetically engineered (GE)-plants, harboring a maize dihydroflavonol 4-reductase (DFR, A1), which was used in former scientific transgenic breeding attempts to enable formation of orange pelargonidin derivatives from the precursor dihydrokaempferol (DHK) in petunia. How and when the A1 cDNA entered the commercial breeding process is unclear. We provide an in-depth analysis of three orange petunia varieties, released by breeders from three countries, with respect to their transgenic construct, transcriptomes, anthocyanin composition, and flavonoid metabolism at the level of selected enzymes and genes. The two possible sources of the A1 cDNA in the undeclared GE-petunia can be discriminated by PCR. A special version of the A1 gene, the A1 type 2 allele, is present, which includes, at the 3'-end, an additional 144 bp segment from the non-viral transposable Cin4-1 sequence, which does not add any functional advantage with respect to DFR activity. This unequivocally points at the first scientific GE-petunia from the 1980s as the A1 source, which is further underpinned e.g., by the presence of specific restriction sites, parts of the untranslated sequences, and the same arrangement of the building blocks of the transformation plasmid used. Surprisingly, however, the GE-petunia cannot be distinguished from native red and blue varieties by their ability to convert DHK in common in vitro enzyme assays, as DHK is an inadequate substrate for both the petunia and maize DFR. Recombinant maize DFR underpins the low DHK acceptance, and, thus, the strikingly limited suitability of the A1 protein for a transgenic approach for breeding pelargonidin-based flower color. The effect of single amino acid mutations on the substrate specificity of DFRs is demonstrated. Expression of the A1 gene is generally lower than the petunia DFR expression despite being under the control of the strong, constitutive p35S promoter. We show that a rare constellation in flavonoid metabolism-absence or strongly reduced activity of both flavonol synthase and B-ring hydroxylating enzymes-allows pelargonidin formation in the presence of DFRs with poor DHK acceptance.

3.
PLoS One ; 12(12): e0190246, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29272302

RESUMO

Relative expressions of structural genes and a number of transcription factors of the anthocyanin pathway relevant in Vaccinium species, and related key enzyme activities were compared with the composition and content of metabolites in skins of ripe fruits of wild albino and blue bilberry (Vaccinium myrtillus) found in Slovenia. Compared to the common blue type, the albino variant had a 151-fold lower total anthocyanin and a 7-fold lower total phenolic content in their berry skin, which correlated with lower gene expression of flavonoid 3-O-glycosyltransferase (FGT; 33-fold), flavanone 3-hydroxylase (FHT; 18-fold), anthocyanidin synthase (ANS; 11-fold), chalcone synthase (CHS, 7.6-fold) and MYBPA1 transcription factor (22-fold). The expression of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LAR), anthocyanidin reductase (ANR) and MYBC2 transcription factor was reduced only by a factor of 1.5-2 in the albino berry skins, while MYBR3 and flavonoid 3',5'-hydroxylase (F3'5'H) were increased to a similar extent. Expression of the SQUAMOSA class transcription factor TDR4, in contrast, was independent of the color type and does therefore not seem to be correlated with anthocyanin formation in this variant. At the level of enzymes, significantly lower FHT and DFR activities, but not of phenylalanine ammonia-lyase (PAL) and CHS/CHI, were observed in the fruit skins of albino bilberries. A strong increase in relative hydroxycinnamic acid derivative concentrations indicates the presence of an additional bottleneck in the general phenylpropanoid pathway at a so far unknown step between PAL and CHS.


Assuntos
Antocianinas/metabolismo , Genes de Plantas , Genes Reguladores , Vaccinium myrtillus/metabolismo , Regulação da Expressão Gênica de Plantas , Fenóis/metabolismo , Eslovênia , Especificidade da Espécie , Vaccinium myrtillus/genética
4.
Plant Cell Tissue Organ Cult ; 130(2): 345-356, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781398

RESUMO

A Malus domestica MdMYB10 transcription factor gene was previously used as visible marker for successful plant transformation. We combined the MdMYB10 transcription factor gene with a GFP gene to test its viability as a non-destructive, visual, double reporter system for functional promoter studies in transgenic strawberry plants. The GFP gene was fused to MdMYB10 to provide evidence for promoter activity in red colored cells of transformed plant tissue and to exclude artefacts resulting from stress response or due to other environmental cues. To test this system in a first approach, we evaluated the MdMYB10-GFP43 construct in transgenic strawberries in combination with two constitutive promoters of varying strength, the strong CaMV 35S promoter and a weak flavonoid 3'-hydroxylase (F3'H) promoter isolated from the ornamental plant Cosmos sulphureus. Agrobacterium tumefaciens mediated transformation of Fragaria vesca with the MdMYB10-GFP43 construct combined with the CaMV 35S or F3'H promoter sequences resulted in the regeneration of 6 and 4 transgenic lines, respectively. A complete red coloration of all plant organs was found in four out of six transgenic lines harboring the 35S-MdMYB10-GFP43 construct. Less red coloration of plant organs was found for lines transformed with the F3'H-MdMYB10-GFP43 construct. The MdMYB10 gene shows only limited suitability as a reporter gene for promoter studies in strawberries because weak promoter activity is difficult to distinguish, particularly in tissues showing a strongly colored background such as green leaves. GFP specific fluorescence signals were detectable neither in tissue strongly expressing MdMYB10 nor in green tissue of any transgenic line. The reason for this remained unclear but it can be excluded that it was due to incorrect splicing.

5.
Planta ; 246(2): 217-226, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28315000

RESUMO

MAIN CONCLUSION: Rare red currants colors caused by low anthocyanin content in the pink and a lack of anthocyanins in the white cultivar correlated with low ANS gene expression, enzyme activity, and increased sugar/acid ratios. Changes in the contents of polyphenols, sugars, and organic acids in berries of the three differently colored Ribes rubrum L. cultivars ('Jonkheer van Tets', 'Pink Champagne', and 'Zitavia') were determined by LC-MS and HPLC at 4 sampling times during the last month of fruit ripening. The activities of the main flavonoid enzymes, chalcone synthase/chalcone isomerase (CHS/CHI), flavanone 3-hydroxylase (FHT), and dihydroflavonol 4-reductase (DFR), and the expression of anthocyanidin synthase (ANS) were additionally measured. Despite many attempts, activities of flavonol synthase and glycosyltransferase did not show reliable results, the reason of which they could not be demonstrated in this study. The pink fruited cultivar 'Pink Champagne' showed generally lower enzyme activity than the red cultivar 'Jonkheer van Tets'. The white cultivar 'Zitavia' showed very low CHS/CHI activity and ANS expression and no FHT and DFR activities were detected. The DFR of R. rubrum L. clearly preferred dihydromyricetin as substrate although no 3',4',5'-hydroxylated anthocyanins were present. The anthocyanin content of the red cultivar slightly increased during the last three weeks of ripening and reached a maximum of 890 mg kg-1 FW. Contrary to this, the pink cultivar showed low accumulation of anthocyanins; however, in the last three weeks of ripening, their content increased from 14 to 105 mg kg-1 FW. Simultaneously, the content of polyphenols slightly decreased in all 3 cultivars, while the sugar/acid ratio increased. The white cultivar had no anthocyanins, but the sugar/acid ratios were the highest. In the white and pink cultivars, reduction/lack of anthocyanins was mainly compensated by increased relative concentrations of hydroxycinnamic acids and flavonols.


Assuntos
Antocianinas/metabolismo , Frutas/enzimologia , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Ribes/enzimologia , Aciltransferases/genética , Aciltransferases/metabolismo , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigenases/genética , Proteínas de Plantas/genética , Ribes/genética , Ribes/fisiologia
6.
Planta ; 243(5): 1213-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26895335

RESUMO

MAIN CONCLUSION: Overexpression of chalcone-3-hydroxylase provokes increased accumulation of 3-hydroxyphloridzin in Malus . Decreased flavonoid concentrations but unchanged flavonoid class composition were observed. The increased 3-hydroxyphlorizin contents correlate well with reduced susceptibility to fire blight and scab. The involvement of dihydrochalcones in the apple defence mechanism against pathogens is discussed but unknown biosynthetic steps in their formation hamper studies on their physiological relevance. The formation of 3-hydroxyphloretin is one of the gaps in the pathway. Polyphenol oxidases and cytochrome P450 dependent enzymes could be involved. Hydroxylation of phloretin in position 3 has high similarity to the B-ring hydroxylation of flavonoids catalysed by the well-known flavonoid 3'-hydroxylase (F3'H). Using recombinant F3'H and chalcone 3-hydroxylase (CH3H) from Cosmos sulphureus we show that F3'H and CH3H accept phloretin to some extent but higher conversion rates are obtained with CH3H. To test whether CH3H catalyzes the hydroxylation of dihydrochalcones in planta and if this could be of physiological relevance, we created transgenic apple trees harbouring CH3H from C. sulphureus. The three transgenic lines obtained showed lower polyphenol concentrations but no shift between the main polyphenol classes dihydrochalcones, flavonols, hydroxycinnamic acids and flavan 3-ols. Increase of 3-hydroxyphloridzin within the dihydrochalcones and of epicatechin/catechin within soluble flavan 3-ols were observed. Decreased activity of dihydroflavonol 4-reductase and chalcone synthase/chalcone isomerase could partially explain the lower polyphenol concentrations. In comparison to the parent line, the transgenic CH3H-lines showed a lower disease susceptibility to fire blight and apple scab that correlated with the increased 3-hydroxyphlorizin contents.


Assuntos
Asteraceae/genética , Malus/genética , Malus/microbiologia , Floretina/análogos & derivados , Doenças das Plantas/genética , Ascomicetos/patogenicidade , Suscetibilidade a Doenças , Erwinia amylovora/patogenicidade , Regulação da Expressão Gênica de Plantas , Malus/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Floretina/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polifenóis/genética , Polifenóis/metabolismo
7.
PLoS One ; 9(11): e112707, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393679

RESUMO

During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa.


Assuntos
Oxirredutases do Álcool/genética , Fragaria/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Antocianinas/metabolismo , Células Clonais , DNA Complementar/genética , DNA Complementar/metabolismo , Fragaria/química , Fragaria/classificação , Fragaria/enzimologia , Frutas/química , Frutas/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
8.
Planta ; 240(5): 1003-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25269395

RESUMO

MAIN CONCLUSION: In contrast to current knowledge, the B -ring hydroxylation pattern of anthocyanins can be determined by the hydroxylation of leucoanthocyanidins in the 3' position by flavonoid 3'-hydroxylase. The cytochrome P450-dependent monooxygenases flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are key flavonoid enzymes that introduce B-ring hydroxyl groups in positions 3' or 3' and 5', respectively. The degree of B-ring hydroxylation is the major determinant of the hue of anthocyanin pigments. Numerous studies have shown that F3'H and F3'5'H may act on more than one type of anthocyanin precursor in addition to other flavonoids, but it has been unclear whether the anthocyanin precursor of the leucoanthocyanidin type can be hydroxylated as well. We have investigated this in vivo using feeding experiments and in vitro by studies with recombinant F3'H. Feeding leucoanthocyanidins to petal tissue with active hydroxylases resulted in anthocyanidins with increased B-ring hydroxylation relative to the fed leucoanthocyanidin, indicating the presence of 3'-hydroxylating activity (in Petunia and Eustoma grandiflorum Grise.) and 3',5'-hydroxylating activity (in E. grandiflorum Grise.). Tetcyclacis, a specific inhibitor of cytochrome P450-dependent enzymes, abolished this activity, excluding involvement of unspecific hydroxylases. While some hydroxylation could be a consequence of reverse catalysis by dihydroflavonol 4-reductase (DFR) providing an alternative substrate, hydroxylating activity was still present in fed petals of a DFR deficient petunia line. In vitro conversion rates and kinetic data for dLPG (a stable leucoanthocyanidin substrate) were comparable to those for other flavonoids for nine of ten recombinant flavonoid hydroxylases from various taxa. dLPG was a poor substrate for only the recombinant Fragaria F3'Hs. Thus, the B-ring hydroxylation pattern of anthocyanins can be determined at all precursor levels in the pathway.


Assuntos
Antocianinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/metabolismo , Antocianinas/química , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Gentianaceae/enzimologia , Gentianaceae/genética , Gentianaceae/metabolismo , Concentração de Íons de Hidrogênio , Hidroxilação/efeitos dos fármacos , Cinética , Estrutura Molecular , Petunia/enzimologia , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Especificidade por Substrato , Triazóis/farmacologia
9.
PLoS One ; 9(9): e107755, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25238248

RESUMO

Blue Angelonia × angustifolia flowers can show spontaneous mutations resulting in white/blue and white flower colourations. In such a white line, a loss of dihydroflavonol 4-reductase (DFR) activity was observed whereas chalcone synthase and flavanone 3-hydroxylase activity remained unchanged. Thus, cloning and characterization of a DFR of Angelonia flowers was carried out for the first time. Two full length DFR cDNA clones, Ang.DFR1 and Ang.DFR2, were obtained from a diploid chimeral white/blue Angelonia × angustifolia which demonstrated a 99% identity in their translated amino acid sequence. In comparison to Ang.DFR2, Ang.DFR1 was shown to contain an extra proline in a proline-rich region at the N-terminus along with two exchanges at the amino acids 12 and 26 in the translated amino acid sequence. The recombinant Ang.DFR2 obtained by heterologous expression in yeast was functionally active catalyzing the NADPH dependent reduction of dihydroquercetin (DHQ) and dihydromyricetin (DHM) to leucocyanidin and leucomyricetin, respectively. Dihydrokaempferol (DHK) in contrast was not accepted as a substrate despite the presence of asparagine in a position assumed to determine DHK acceptance. We show that substrate acceptance testing of DFRs provides biased results for DHM conversion if products are extracted with ethyl acetate. Recombinant Ang.DFR1 was inactive and functional activity could only be restored via exchanges of the amino acids in position 12 and 26 as well as the deletion of the extra proline. E. coli transformation of the pGEX-6P-1 vector harbouring the Ang.DFR2 and heterologous expression in E. coli resulted in functionally active enzymes before and after GST tag removal. Both the GST fusion protein and purified DFR minus the GST tag could be stored at -80°C for several months without loss of enzyme activity and demonstrated identical substrate specificity as the recombinant enzyme obtained from heterologous expression in yeast.


Assuntos
Oxirredutases do Álcool/genética , Glutationa Transferase/metabolismo , Plantago/enzimologia , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Clonagem Molecular , DNA Complementar/química , Escherichia coli/genética , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Mutagênese Sítio-Dirigida , Plantago/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
10.
PLoS One ; 8(5): e61766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667445

RESUMO

The formation of 4-deoxyaurones, which serve as UV nectar guides in Bidens ferulifolia (Jacq.) DC., was established by combination of UV photography, mass spectrometry, and biochemical assays and the key step in aurone formation was studied. The yellow flowering ornamental plant accumulates deoxy type anthochlor pigments (6'-deoxychalcones and the corresponding 4-deoxyaurones) in the basal part of the flower surface whilst the apex contains only yellow carotenoids. For UV sensitive pollinating insects, this appears as a bicoloured floral pattern which can be visualized in situ by specific ammonia staining of the anthochlor pigments. The petal back side, in contrast, shows a faintly UV absorbing centre and UV absorbing rays along the otherwise UV reflecting petal apex. Matrix-free UV laser desorption/ionisation mass spectrometric imaging (LDI-MSI) indicated the presence of 9 anthochlors in the UV absorbing areas. The prevalent pigments were derivatives of okanin and maritimetin. Enzyme preparations from flowers, leaves, stems and roots of B. ferulifolia and from plants, which do not accumulate aurones e.g. Arabidopsis thaliana, were able to convert chalcones to aurones. Thus, aurone formation could be catalyzed by a widespread enzyme and seems to depend mainly on a specific biochemical background, which favours the formation of aurones at the expense of flavonoids. In contrast to 4-hydroxyaurone formation, hydroxylation and oxidative cyclization to the 4-deoxyaurones does not occur in one single step but is catalyzed by two separate enzymes, chalcone 3-hydroxylase and aurone synthase (catechol oxidase reaction). Aurone formation shows an optimum at pH 7.5 or above, which is another striking contrast to 4-hydroxyaurone formation in Antirrhinum majus L. This is the first example of a plant catechol oxidase type enzyme being involved in the flavonoid pathway and in an anabolic reaction in general.


Assuntos
Benzofuranos/análise , Benzofuranos/metabolismo , Bidens/química , Flores/química , Pigmentos Biológicos/metabolismo , Carotenoides/química , Catecol Oxidase/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Concentração de Íons de Hidrogênio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Raios Ultravioleta
11.
Plant Physiol Biochem ; 72: 72-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23623754

RESUMO

Flavonoid 3'-hydroxylase (F3'H) was studied for the first time in different Fragaria species. The cDNA clones isolated from unripe and ripe fruits of Fragaria x ananassa (garden strawberry) and Fragaria vesca (wild strawberry) showed high similarity (99% at the amino acid level) to the publically available F. vesca genome sequence and no significant differences could be identified between species and developmental stages of the fruits. In contrast, the genomic F3'H clones showed differences in the non-coding regions and 5'-flanking elements. The recombinant F3'Hs were functionally active and showed high specificity for naringenin, dihydrokaempferol, and kaempferol, whereas apigenin was only a minor substrate. During fruit development, a clear difference in the F3'H expression was observed between F. × ananassa and F. vesca. While a drastic decline of F3'H expression occurred during fruit ripening in F. × ananassa, F3'H in F. vesca was highly expressed in all stages. This was reflected by the anthocyanin composition, which showed a prevalence of pelargonidin in ripe fruits of F. × ananassa, whereas F. vesca had a high content of cyanidin. Screening of 17 berry species for their anthocyanin and flavonol composition showed that the prevalence of monohydroxylated anthocyanins makes garden strawberry unique among all other fruit species indicating that selection of bright red color during strawberry breeding, which consumers typically associate with freshness and ripeness, has selected phenotypes with a special biochemical background.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/metabolismo , Fragaria/enzimologia , Fragaria/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Frutas/genética , Hidroxilação , Proteínas de Plantas/genética
12.
BMC Plant Biol ; 12: 225, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23176321

RESUMO

BACKGROUND: More than 20,000 cultivars of garden dahlia (Dahlia variabilis hort.) are available showing flower colour from white, yellow and orange to every imaginable hue of red and purple tones. Thereof, only a handful of cultivars are so-called black dahlias showing distinct black-red tints. Flower colour in dahlia is a result of the accumulation of red anthocyanins, yellow anthochlors (6'-deoxychalcones and 4-deoxyaurones) and colourless flavones and flavonols, which act as copigments. White and yellow coloration occurs only if the pathway leading to anthocyanins is incomplete. Not in all cultivars the same step of the anthocyanin pathway is affected, but the lack of dihydroflavonol 4-reductase activity is frequently observed and this seems to be based on the suppression of the transcription factor DvIVS. The hitherto unknown molecular background for black colour in dahlia is here presented. RESULTS: Black cultivars accumulate high amounts of anthocyanins, but show drastically reduced flavone contents. High activities were observed for all enzymes from the anthocyanin pathway whereas FNS II activity could not be detected or only to a low extent in 13 of 14 cultivars. cDNA clones and genomic clones of FNS II were isolated. Independently from the colour type, heterologous expression of the cDNA clones resulted in functionally active enzymes. FNS II possesses one intron of varying length. Quantitative Real-time PCR showed that FNS II expression in black cultivars is low compared to other cultivars. No differences between black and red cultivars were observed in the expression of transcription factors IVS and possible regulatory genes WDR1, WDR2, MYB1, MYB2, 3RMYB and DEL or the structural genes of the flavonoid pathway. Despite the suppression of FHT expression, flavanone 3-hydroxylase (FHT, synonym F3H) enzyme activity was clearly present in the yellow and white cultivars. CONCLUSIONS: An increased accumulation of anthocyanins establishes the black flowering phenotypes. In the majority of black cultivars this is due to decreased flavone accumulation and thus a lack of competition for flavanones as the common precursors of flavone formation and the anthocyanin pathway. The low FNS II activity is reflected by decreased FNS II expression.


Assuntos
Antocianinas/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Dahlia/enzimologia , Flavonas/biossíntese , Flores/enzimologia , Pigmentação/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , Dahlia/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência
13.
J Exp Bot ; 61(12): 3451-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20566567

RESUMO

A chalcone 3-hydroxylase (CH3H) cDNA clone was isolated and characterized from Cosmos sulphureus petals accumulating butein (2',3,4,4'-tetrahydroxychalcone) derivatives as yellow flower pigments. The recombinant protein catalyses the introduction of an additional hydroxyl group in the B-ring of chalcones, a reaction with high similarity to the hydroxylation of flavonoids catalysed by the well-studied flavonoid 3'-hydroxylase (F3'H). CH3H shows high specificity for chalcones, but a low F3'H activity was also detected. By contrast, the common F3'H from C. sulphureus does not accept chalcones as substrates and is therefore unlikely to be involved in the creation of the B-ring hydroxylation pattern of the yellow flower pigments. CH3H was primarily expressed in young buds, the main tissue for chalcone pigment formation. Expression levels in open flowers and 3-d-old seedlings were lower and almost no CH3H expression was observed in leaves. F3'H, in contrast, showed the highest expression also in buds, but comparable expression rates in all other tissues tested. Recombinant hybrid proteins constructed from CH3H and F3'H fragments demonstrated that amino acid residues at a substrate recognition site and an insertion of four amino acid residues in a putative loop region have an impact on chalcone acceptance. This is the first identification of a CH3H cDNA from any plant species.


Assuntos
Asteraceae/genética , Chalconas/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Asteraceae/enzimologia , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Arch Biochem Biophys ; 494(1): 40-5, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19931222

RESUMO

In the petals of Dahlia variabilis, hydroxylation of chalcones at position 3 can be detected, except the well-known flavonoid 3'-hydroxylation. Although the reaction is well characterized at the enzymatic level, it remained unclear whether it is catalyzed by a flavonoid 3'-hydroxylase (F3'H, EC1.14.13.21, CYP75B) with broad substrate specificity. Two novel allelic variants of F3'H were cloned from D. variabilis, which differ only in three amino acids within their 508 residues. The corresponding recombinant enzymes show significant differences in their chalcone 3-hydroxylase (CH3H) activity. A substitution of alanine at position 425 with valine enables CH3H activity, whereas the reciprocal substitution leads to a loss of CH3H activity. Interaction of the valine at position 425 with not yet identified structural properties seems to be decisive for chalcone acceptance. This is the first identification of an F3'H which is able to catalyze chalcone 3-hydroxylation to a physiologically relevant extent from any plant species.


Assuntos
Alelos , Chalconas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Dahlia/genética , Sequência de Aminoácidos , Sequência de Bases , Sistema Enzimático do Citocromo P-450/química , Primers do DNA , DNA Complementar , Dahlia/enzimologia , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Phytochemistry ; 70(7): 889-98, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19477473

RESUMO

The UV-honey guides of Rudbeckia hirta were investigated by UV-photography, reflectance spectroscopy, LC-MS analysis and studies of the enzymes involved in the formation of the UV-absorbing flavonols present in the petals. It was shown for the first time that the typical bull's eye pattern is already established at the early stages of flower anthesis on the front side of the petal surface, but is hidden to pollinators until the buds are open and the petals are unfolded. The rear side of the petals remains UV-reflecting during the whole flower anthesis. Studies on the local distribution of 19 flavonols across the petals confirmed that the majority are concentrated in the basal part of the ray flower. However, in contrast to the earlier studies, eupatolitin 3-O-glucoside (6,7-dimethoxyquercetin 3-O-glucoside) was present in both the basal and apical parts of the petals, whereas eupatolin (6,7-dimethoxyquercetin 3-O-rhamnoside) was exclusively found in the apical parts. The enzymes involved in the formation of the flavonols in R. hirta were demonstrated for the first time. These include a rare flavonol 6-hydroxylase, which was identified as cytochrome P450-dependent monooxygenase and did not accept any methylated flavonol as substrate. All enzymes were present in the basal and apical parts of the petals, although some of them clearly showed higher activities in the basal part. This indicates that the local accumulation of flavonols in R. hirta is not achieved by a locally restricted presence of the enzymes involved in flavonol formation.


Assuntos
Flavonóis/análise , Flavonóis/metabolismo , Flores , Rudbeckia/química , Anatomia , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonóis/química , Flores/anatomia & histologia , Flores/química , Flores/metabolismo , Glucosídeos/química , Glucosídeos/metabolismo , Mel , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Rudbeckia/enzimologia , Rudbeckia/metabolismo , Espectrofotometria Ultravioleta , Especificidade por Substrato
16.
J Agric Food Chem ; 57(11): 4983-7, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19435288

RESUMO

Flavonoids are important secondary metabolites, which are ubiquitously present in plant-derived food. Since flavonoids may show beneficial effects on human health, there is increasing interest in the availability of plants with a tailor-made flavonoid spectrum. Determination of flavonoid enzyme activities and investigations into their substrate specificity are an important precondition for both classical and molecular approaches. We tested two different protocols for enzyme preparation from eight fruit species. In many cases, a protocol adapted for polyphenol-rich tissues was superior. Using a suitable protocol for investigations of kiwi fruits, we show that flavanone 3-hydroxylase is absent in the green-fleshed cultivar Hayward. As flavonoid enzyme activities could be detected in harvested kiwi fruits over a storage period of five months, postharvest modification of the flavonoid spectrum has to be expected.


Assuntos
Flavonoides/metabolismo , Frutas/química , Frutas/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...