Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 778382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975962

RESUMO

Plant development is highly affected by light quality, direction, and intensity. Under natural growth conditions, shoots are directly exposed to light whereas roots develop underground shielded from direct illumination. The photomorphogenic development strongly represses shoot elongation whereas promotes root growth. Over the years, several studies helped the elucidation of signaling elements that coordinate light perception and underlying developmental outputs. Light exposure of the shoots has diverse effects on main root growth and lateral root (LR) formation. In this study, we evaluated the phenotypic root responses of wild-type Arabidopsis plants, as well as several mutants, grown in a D-Root system. We observed that sucrose and light act synergistically to promote root growth and that sucrose alone cannot overcome the light requirement for root growth. We also have shown that roots respond to the light intensity applied to the shoot by changes in primary and LR development. Loss-of-function mutants for several root light-response genes display varying phenotypes according to the light intensity to which shoots are exposed. Low light intensity strongly impaired LR development for most genotypes. Only vid-27 and pils4 mutants showed higher LR density at 40 µmol m-2 s-1 than at 80 µmol m-2 s-1 whereas yuc3 and shy2-2 presented no LR development in any light condition, reinforcing the importance of auxin signaling in light-dependent root development. Our results support the use of D-Root systems to avoid the effects of direct root illumination that might lead to artifacts and unnatural phenotypic outputs.

2.
Plant Mol Biol ; 101(4-5): 487-498, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31560104

RESUMO

KEY MESSAGE: The transcriptional profile of roots is highly affected by shoot illumination. Transcriptogram analysis allows the identification of cellular processes that are not detected by DESeq. Light is a key environmental factor regulating plant growth and development. Arabidopsis thaliana seedlings grown under light display a photomorphogenic development pattern, showing short hypocotyl and long roots. On the other hand, when grown in darkness, they display skotomorphogenic development, with long hypocotyls and short roots. Although many signals from shoots might be important for triggering root growth, the early transcriptional responses that stimulate primary root elongation are still unknown. Here, we aimed to investigate which genes are involved in the early photomorphogenic root development of dark grown roots. We found that 1616 genes 4 days after germination (days-old), and 3920 genes 7 days-old were differently expressed in roots when the shoot was exposed to light. Of these genes, 979 were up regulated in 4 days and 2784 at 7 days-old. We compared the functional categorization of differentially regulated processes by two methods: GO term enrichment and transcriptogram analysis. Expression analysis of nine selected candidate genes in roots confirmed the data observed in the RNA-seq analysis. Loss-of-function mutants of these selected differentially expressed genes suggest the involvement of these genes in root development in response to shoot illumination. Our findings are consistent with the observation that dark grown roots respond to the shoot-perceived aboveground light environment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Escuridão , Iluminação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
3.
Front Plant Sci ; 10: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930909

RESUMO

Chilling requirement (CR) for bud dormancy completion determines the time of bud break in apple (Malus × domestica Borkh.). The molecular control of bud dormancy is highly heritable, suggesting a strong genetic control of the trait. An available Infinium II SNP platform for genotyping containing 8,788 single nucleotide polymorphic markers was employed, and linkage maps were constructed in a F1 cross from the low CR M13/91 and the moderate CR cv. Fred Hough. These maps were used to identify quantitative trait loci (QTL) for bud break date as a trait related to dormancy release. A major QTL for bud break was detected at the beginning of linkage group 9 (LG9). This QTL remained stable during seven seasons in two different growing sites. To increase mapping efficiency in detecting contributing genes underlying this QTL, 182 additional SNP markers located at the locus for bud break were used. Combining linkage mapping and structural characterization of the region, the high proportion of the phenotypic variance in the trait explained by the QTL is related to the coincident positioning of Arabidopsis orthologs for ICE1, FLC, and PRE1 protein-coding genes. The proximity of these genes from the most explanatory markers of this QTL for bud break suggests potential genetic additive effects, reinforcing the hypothesis of inter-dependent mechanisms controlling dormancy induction and release in apple trees.

4.
J Exp Bot ; 69(5): 1247-1259, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29373762

RESUMO

Galactinol synthase (GolS) is a key enzyme in the biosynthetic pathway of raffinose family oligosaccharides (RFOs), which play roles in carbon storage, signal transduction, and osmoprotection. The present work assessed the evolutionary history of GolS genes across the Rosaceae using several bioinformatic tools. Apple (Malus × domestica) GolS genes were transcriptionally characterized during bud dormancy, in parallel with galactinol and raffinose measurements. Additionally, MdGolS2, a candidate to regulate seasonal galactinol and RFO content during apple bud dormancy, was functionally characterized in Arabidopsis. Evolutionary analyses revealed that whole genome duplications have driven GolS gene evolution and diversification in Rosaceae speciation. The strong purifying selection identified in duplicated GolS genes suggests that differential gene expression might define gene function better than protein structure. Interestingly, MdGolS2 was differentially expressed during bud dormancy, concomitantly with the highest galactinol and raffinose levels. One of the intrinsic adaptive features of bud dormancy is limited availability of free water; therefore, we generated transgenic Arabidopsis plants expressing MdGolS2. They showed higher galactinol and raffinose contents and increased tolerance to water deficit. Our results suggest that MdGolS2 is the major GolS responsible for RFO accumulation during apple dormancy, and these carbohydrates help to protect dormant buds against limited water supply.


Assuntos
Dissacarídeos/metabolismo , Galactosiltransferases/genética , Proteínas de Plantas/genética , Rafinose/metabolismo , Rosaceae/genética , Evolução Molecular , Flores/crescimento & desenvolvimento , Flores/metabolismo , Galactosiltransferases/metabolismo , Malus/enzimologia , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Dormência de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Rosaceae/enzimologia , Rosaceae/metabolismo
5.
Physiol Plant ; 155(3): 315-29, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25809953

RESUMO

Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple.


Assuntos
Aclimatação/genética , Malus/fisiologia , Família Multigênica , Dormência de Plantas/genética , Proteínas de Plantas/genética , Brasil , Temperatura Baixa , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Malus/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...