Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1361424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576486

RESUMO

Among women, breast carcinoma is one of the most complex cancers, with one of the highest death rates worldwide. There have been significant improvements in treatment methods, but its early detection still remains an issue to be resolved. This study explores the multifaceted function of hyaluronan-mediated motility receptor (HMMR) in breast cancer progression. HMMR's association with key cell cycle regulators (AURKA, TPX2, and CDK1) underscores its pivotal role in cancer initiation and advancement. HMMR's involvement in microtubule assembly and cellular interactions, both extracellularly and intracellularly, provides critical insights into its contribution to cancer cell processes. Elevated HMMR expression triggered by inflammatory signals correlates with unfavorable prognosis in breast cancer and various other malignancies. Therefore, recognizing HMMR as a promising therapeutic target, the study validates the overexpression of HMMR in breast cancer and various pan cancers and its correlation with certain proteins such as AURKA, TPX2, and CDK1 through online databases. Furthermore, the pathways associated with HMMR were explored using pathway enrichment analysis, such as Gene Ontology, offering a foundation for the development of effective strategies in breast cancer treatment. The study further highlights compounds capable of inhibiting certain pathways, which, in turn, would inhibit the upregulation of HMMR in breast cancer. The results were further validated via MD simulations in addition to molecular docking to explore protein-protein/ligand interaction. Consequently, these findings imply that HMMR could play a pivotal role as a crucial oncogenic regulator, highlighting its potential as a promising target for the therapeutic intervention of breast carcinoma.

2.
Biochem Genet ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427123

RESUMO

Salmonella Typhimurium (ST) is a zoonotic pathogen that can cause gastroenteritis in humans when they consume contaminated food or water. When exposed to various stressors, both from living organisms (biotic) and the environment (abiotic), Salmonella Typhimurium produces Universal Stress Proteins (USPs). These proteins are gaining recognition for their crucial role in bacterial stress resistance and the ability to enter a prolonged state of growth arrest. Additionally, USPs exhibit diverse structures due to the fusion of the USP domain with different catalytic motifs, enabling them to participate in various reactions and cellular activities during stressful conditions. In this particular study, researchers cloned and analyzed the uspA gene obtained from poultry-derived strains of Salmonella Typhimurium. The gene comprises 435 base pairs, encoding a USP family protein consisting of 144 amino acids. Phylogenetic analysis demonstrated a close relationship between the uspA genes of Salmonella Typhimurium and those found in other bacterial species. We used molecular dynamics simulations and 3D structure prediction to ensure that the USPA protein was stable. Furthermore, we also carried out motif search and network analysis of protein-protein interactions. The findings from this study offer valuable insights for the development of inhibitors targeted against Salmonella Typhimurium.

3.
Heliyon ; 10(3): e24670, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314272

RESUMO

Cancer represents a significant global health and economic burden due to its high mortality rates. While effective in some instances, traditional chemotherapy often falls short of entirely eradicating various types of cancer. It can cause severe side effects due to harm to healthy cells. Two therapeutic approaches have risen to the forefront to address these limitations: metronomic chemotherapy (MCT) and drug repurposing. Metronomic chemotherapy is an innovative approach that breaks from traditional models. It involves the administration of chemotherapeutic regimens at lower doses, without long drug-free intervals that have previously been a hallmark of such treatments. This method offers a significant reduction in side effects and improved disease management. Simultaneously, drug repurposing has gained considerable attraction in cancer treatment. This approach involves utilizing existing drugs, initially developed for other therapeutic purposes, as potential cancer treatments. The application of known drugs in a new context accelerates the timeline from laboratory to patient due to pre-existing safety and dosage data. The intersection of these two strategies gives rise to a novel therapeutic approach named 'Metronomics.' This approach encapsulates the benefits of both MCT and drug repurposing, leading to reduced toxicity, potential for oral administration, improved patient quality of life, accelerated clinical implementation, and enhanced affordability. Numerous clinical studies have endorsed the efficacy of metronomic chemotherapy with tolerable side effects, underlining the potential of Metronomics in better cancer management, particularly in low- and middle-income countries. This review underscores the benefits and applications of metronomic chemotherapy and drug repurposing, specifically in the context of breast cancer, showcasing the promising results of pre-clinical and clinical studies. However, we acknowledge the necessity of additional clinical investigations to definitively establish the role of metronomic chemotherapy in conjunction with other treatments in comprehensive cancer management.

4.
J Biomol Struct Dyn ; : 1-21, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948293

RESUMO

Fritillaria cirrhosa D. Don is a well-known medicinal plant of Kashmir Himalaya. Traditionally, it has been used to treat several diseases, including cancer. However, the molecular mechanism behind anticancer activity remains unclear. Therefore, in the present study, we have performed high performance-liquid chromatography-mass spectrometry (HR-LC/MS), network pharmacology, molecular docking and molecular dynamic (MD) simulation methods were used to explore the underlying molecular mechanism of F. cirrhosa for the treatment of breast cancer (BC). The targets of F. cirrhosa for treating BC were predicted using databases like SwissTargetPrediction, Gene Cards and OMIM. Protein-protein interaction analysis and network construction were performed using the Search Tool for the Retrieval of Interacting Genes/Proteins programme, and analysis of Gene Ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was done using the Cytoscape programme. In addition, molecular docking was used to investigate intermolecular interactions between the compounds and the proteins using the Autodock tool. MD simulations studies were also used to explore the stability of the representative AKT1 gene peiminine and Imperialine-3-ß-glucoside. In addition, experimental treatment of F. cirrhosa was also verified. HR-LC/MS detected the presence of several secondary metabolites. Afterward, molecular docking was used to verify the effective activity of the active ingredients against the prospective targets. Additionally, Peiminine and Imperialine-3-ß-glucoside showed the highest binding energy score against AKT-1 (-12.99 kcal/mol and -12.08 kcal/mol). AKT1 with Peiminine and Imperialine-3-ß-glucoside was further explored for MD simulations. During the MD simulation study at 100 nanoseconds, a stable complex formation of AKT1 + Peiminine and Imperialine-3-ß-glucoside was observed. The binding free energy calculations using MM/GBSA showed significant binding of the ligand with protein (ΔG: -79.83 ± 3.0 kcal/mol) between AKT1 + Peiminine was observed. The principal component analysis exhibited a stable converged structure by achieving global motion. Lastly, F. cirrhosa extracts also exhibited momentous anticancer activity through in vitro studies. Therefore, present study revealed the molecular mechanism of F. cirrhosa constituents for the effective treatment of BC by deactivating various multiple gene targets, multiple pathways particularly the PI3K-Akt signaling pathway. These findings emphasized the momentous anti-BC activity of F. cirrhosa constituents.Communicated by Ramaswamy H. Sarma.


Fritillaria cirrhosa D. Don is well-known, the medicinal plant in the Kashmir Himalaya. Traditionally, it has been used to treat various diseases, including cancer.Many secondary metabolites were identified in F. cirrhosa using high performance-liquid chromatography-mass spectrometry technique, and these bioactive components and potential breast cancer (BC) therapy targets were validated using network pharmacology, molecular docking and MD simulation studies.The bioactive components such as Peimine, Imperialine 3-glucoside and other vital phytocompounds of F. cirrhosa have been demonstrated to interact with AKT1 efficiently, indicating their relevance in inhibiting AKT1 and other protein targets in BC.This study overall showed the anticancer activity of F. cirrhosa extracts by integrating network pharmacology, docking analysis and in vitro experiments.

5.
Crit Rev Oncol Hematol ; 192: 104156, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827439

RESUMO

Breast cancer is a complex and diverse disease accounting for nearly 30% of all cancers diagnosed in females. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. With over half a million deaths annually, it is imperative to explore new therapeutic approaches to combat the disease. Within a breast tumor, a small sub-population of heterogeneous cells, with a unique ability of self-renew and differentiation and responsible for tumor formation, initiation, and recurrence are referred to as breast cancer stem cells (BCSCs). These BCSCs have been identified as one of the main contributors to chemoresistance in breast cancer, making them an attractive target for developing novel therapeutic strategies. These cells exhibit surface biomarkers such as CD44+, CD24-/LOW, ALDH, CD133, and CD49f phenotypes. Higher expression of CD44+ and ALDH activity has been associated with the formation of tumors in various cancers. Moreover, the abnormal regulation of signaling pathways, including Hedgehog, Notch, ß-catenin, JAK/STAT, and P13K/AKT/mTOR, leads to the formation of cancer stem cells, resulting in the development of tumors. The growing drug resistance in BC is a significant challenge, highlighting the need for new therapeutic strategies to combat this dreadful disease. Retinoids, a large group of synthetic derivatives of vitamin A, have been studied as chemopreventive agents in clinical trials and have been shown to regulate various crucial biological functions including vision, development, inflammation, and metabolism. On a cellular level, the retinoid activity has been well characterized and translated and is known to induce differentiation and apoptosis, which play important roles in the outcome of the transformation of tissues into malignant. Retinoids have been investigated extensively for their use in the treatment and prevention of cancer due to their high receptor-binding affinity to directly modulate gene expression programs. Therefore, in this study, we aim to summarize the current understanding of BCSCs, their biomarkers, and the associated signaling pathways. Retinoids, such as Adapalene, a third-generation retinoid, have shown promising anti-cancer potential and may serve as therapeutic agents to target BCSCs.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Retinoides/uso terapêutico , Retinoides/metabolismo , Mama/metabolismo , Biomarcadores/metabolismo , Células-Tronco Neoplásicas/patologia
6.
Front Microbiol ; 14: 1231938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720149

RESUMO

Antibiotic resistance development and pathogen cross-dissemination are both considered essential risks to human health on a worldwide scale. Antimicrobial resistance genes (AMRs) are acquired, expressed, disseminated, and traded mainly through integrons, the key players capable of transferring genes from bacterial chromosomes to plasmids and their integration by integrase to the target pathogenic host. Moreover, integrons play a central role in disseminating and assembling genes connected with antibiotic resistance in pathogenic and commensal bacterial species. They exhibit a large and concealed diversity in the natural environment, raising concerns about their potential for comprehensive application in bacterial adaptation. They should be viewed as a dangerous pool of resistance determinants from the "One Health approach." Among the three documented classes of integrons reported viz., class-1, 2, and 3, class 1 has been found frequently associated with AMRs in humans and is a critical genetic element to serve as a target for therapeutics to AMRs through gene silencing or combinatorial therapies. The direct method of screening gene cassettes linked to pathogenesis and resistance harbored by integrons is a novel way to assess human health. In the last decade, they have witnessed surveying the integron-associated gene cassettes associated with increased drug tolerance and rising pathogenicity of human pathogenic microbes. Consequently, we aimed to unravel the structure and functions of integrons and their integration mechanism by understanding horizontal gene transfer from one trophic group to another. Many updates for the gene cassettes harbored by integrons related to resistance and pathogenicity are extensively explored. Additionally, an updated account of the assessment of AMRs and prevailing antibiotic resistance by integrons in humans is grossly detailed-lastly, the estimation of AMR dissemination by employing integrons as potential biomarkers are also highlighted. The current review on integrons will pave the way to clinical understanding for devising a roadmap solution to AMR and pathogenicity. Graphical AbstractThe graphical abstract displays how integron-aided AMRs to humans: Transposons capture integron gene cassettes to yield high mobility integrons that target res sites of plasmids. These plasmids, in turn, promote the mobility of acquired integrons into diverse bacterial species. The acquisitions of resistant genes are transferred to humans through horizontal gene transfer.

7.
Front Endocrinol (Lausanne) ; 14: 1153289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670876

RESUMO

Introduction: Polycystic Ovary syndrome (PCOS) affects the health of many women around theworld. Apart from fundamental metabolic problems connected to PCOS, focus of our study is on the role of quercetin on genes relevant to steroidogenesis and folliculogenesis. Methods: Eighteen mature parkes strain mice (4-5 weeks old) weighing18-21 g were randomly divided into three groups of six each as follows: Group I serves as the control and was given water and a regular chow diet ad lib for 66 days; group II was given oral gavage administration of letrozole (LETZ) (6 mg/kgbw) for 21 days to induce PCOS and was left untreated for 45 days; For three weeks, Group III received oral gavage dose of LETZ (6 mg/kg), after which it received Quercetin (QUER) (125 mg/kg bw orally daily) for 45 days. Results: In our study we observed that mice with PCOS had irregular estrous cycle with increased LH/FSH ratio, decreased estrogen level and decline in expression of Kitl, Bmp1, Cyp11a1, Cyp19a1, Ar, lhr, Fshr and Esr1 in ovary. Moreover, we observed increase in the expression of CYP17a1, as well as increase in cholesterol, triglycerides, testosterone, vascular endothelial growth factor VEGF and insulin levels. All these changes were reversed after the administration of quercetin in PCOS mice. Discussion: Quercetin treatment reversed the molecular, functional and morphological abnormalities brought on due to letrozole in pathological and physiological setting, particularly the issues of reproduction connected to PCOS. Quercetin doesn't act locally only but it acts systematically as it works on Pituitary (LH/FSH)- Ovary (gonad hormones) axis. the Side effects of Quercetin have to be targeted in future researches. Quercetin may act as a promising candidate for medical management of human PCOS.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Animais , Camundongos , Quercetina , Letrozol , Fator A de Crescimento do Endotélio Vascular , Hormônio Foliculoestimulante
8.
Front Pharmacol ; 14: 1135898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724182

RESUMO

Delphinium roylei Munz is an indigenous medicinal plant to India where its activity against cancer has not been previously investigated, and its specific interactions of bioactive compounds with vulnerable breast cancer drug targets remain largely unknown. Therefore, in the current study, we aimed to evaluate the anti-breast cancer activity of different extracts of D. roylei against breast cancer and deciphering the molecular mechanism by Network Pharmacology combined with Molecular Docking and in vitro verification. The experimental plant was extracted with various organic solvents according to their polarity index. Phytocompounds were identified by High resolution-liquid chromatography-mass spectrometry (HR-LC/MS) technique, and SwissADME programme evaluated their physicochemical properties. Next, target(s) associated with the obtained bioactives or breast cancer-related targets were retrieved by public databases, and the Venn diagram selected the overlapping targets. The networks between overlapping targets and bioactive were visualized, constructed, and analyzed by STRING programme and Cytoscape software. Finally, we implemented a molecular docking test (MDT) using AutoDock Vina to explore key target(s) and compound(s). HR-LC/MS detected hundreds of phytocompounds, and few were accepted by Lipinski's rules after virtual screening and therefore classified as drug-like compounds (DLCs). A total of 464 potential target genes were attained for the nine quantitative phytocompounds and using Gene Cards, OMIM and DisGeNET platforms, 12063 disease targets linked to breast cancer were retrieved. With Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment, a total of 20 signalling pathways were manifested, and a hub signalling pathway (PI3K-Akt signalling pathway), a key target (Akt1), and a key compound (8-Hydroxycoumarin) were selected among the 20 signalling pathways via molecular docking studies. The molecular docking investigation revealed that among the nine phytoconstituents, 8-hydroxycoumarin showed the best binding energy (-9.2 kcal/mol) with the Akt1 breast cancer target. 8-hydroxycoumarin followed all the ADME property prediction using SwissADME, and 100 nanoseconds (ns) MD simulations of 8-hydroxycoumarin complexes with Akt1 were found to be stable. Furthermore, D. roylei extracts also showed significant antioxidant and anticancer activity through in vitro studies. Our findings indicated for the first time that D. roylei extracts could be used in the treatment of BC.

9.
Saudi J Biol Sci ; 30(7): 103705, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37425621

RESUMO

Breast cancer is the leading cause of death among women worldwide. Despite the recent treatment options like surgery, chemotherapy etc. the lethality of breast cancer is alarming. Natural compounds are considered a better treatment option against breast carcinoma because of their lower side effects and specificity in targeting important proteins involved in the aberrant activation of pathways in breast cancer. A recently discovered compound called Juglanthraquinone C, which is found in the bark of the Juglans mandshurica Maxim (Juglandaceae) tree has shown promising cytotoxicity in hepatocellular carcinoma. However, not much data is available on the molecular mechanisms followed by this compound. Therefore, we aimed to investigate the molecular mechanism followed by Juglanthraquinone C against breast cancer. We used the network pharmacology technique to analyse the mechanism of action of Juglanthraquinone C in breast cancer and validated our study by applying various computational tools such as UALCAN, cBioportal, TIMER, docking and simulation. The results showed the compound and breast cancer target network shared 31 common targets. Moreover, we observed that Juglanthraquinone C targets multiple deregulated genes in breast cancer such as TP53, TGIF1, IGF1R, SMAD3, JUN, CDC42, HBEGF, FOS and signaling pathways such as PI3K-Akt pathway, TGF-ß signaling pathway, MAPK pathway and HIPPO signaling pathway. A docking examination revealed that the investigated drug had a high affinity for the primary target TGIF1 protein. A stable protein-ligand combination was generated by the best hit molecule, according to molecular dynamics modeling. The main aim of this study was to examine Juglanthraquinone C's significance as a prospective breast cancer treatment and to better understand the molecular mechanism this substance uses in breast cancer since there is a need to discover new therapeutics to decrease the load on current therapeutics which also are currently ineffective due to several side effects and development of drug resistance.

10.
Mol Pharm ; 20(7): 3471-3483, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37254498

RESUMO

Crystal engineering is one green alternative to organic synthesis that can be used to manipulate molecular behavior promptly and economically. We report the preparation and characterization of the pharmaceutical organic salt (FLC-C) of fluconazole (FLC) and organosulfonate (NDSA-2H), based on the sulfonate-pyridinium supramolecular synthon. Structural studies validate the crystallization of the two-component stoichiometric crystal with two molecules of water in the triclinic P1̅ space group. The anticipated proton transfer between the crystal forms leads to ionic interactions, augmenting the organic salt's thermal stability. Hirshfeld studies of FLC-C help to understand the role and significance of different types of intermolecular interactions responsible for crystal packing. The structural and theoretical studies indicate the absence of π-π interactions in FLC-C, which account for the incipience of solid-state emission in the product. The solubility studies establish augmented aqueous solubility of FLC-C over pristine FLC at physiological pH values of 2 and 7. Interestingly, in in vitro studies, FLC-C appears to serve as a potential alternative to FLC, displaying a wide spectrum of antifungal activity. FLC-C is active against several human pathogenic yeast strains, including the leading and emerging Candida strains (Candida albicans and Candida auris, respectively), at comparable and/or lower drug concentrations without showing any enhanced host cell toxicity. Interestingly, the pharmaceutical co-crystal also displays fluorescence properties inside the Candida cells.


Assuntos
Antifúngicos , Fluconazol , Humanos , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Antifúngicos/farmacologia , Candida albicans , Candida , Cloreto de Sódio , Preparações Farmacêuticas , Farmacorresistência Fúngica
11.
Front Med (Lausanne) ; 10: 1135541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122338

RESUMO

Nations' ongoing struggles with a number of novel and reemerging infectious diseases, including the ongoing global health issue, the SARS-Co-V2 (severe acute respiratory syndrome coronavirus 2) outbreak, serve as proof that infectious diseases constitute a serious threat to the global public health. Moreover, the fatality rate in humans is rising as a result of the development of severe infectious diseases brought about by multiple drug-tolerant pathogenic microorganisms. The widespread use of traditional antimicrobial drugs, immunosuppressive medications, and other related factors led to the establishment of such drug resistant pathogenic microbial species. To overcome the difficulties commonly encountered by current infectious disease management and control processes, like inadequate effectiveness, toxicities, and the evolution of drug tolerance, new treatment solutions are required. Fortunately, immunotherapies already hold great potential for reducing these restrictions while simultaneously expanding the boundaries of healthcare and medicine, as shown by the latest discoveries and the success of drugs including monoclonal antibodies (MAbs), vaccinations, etc. Immunotherapies comprise methods for treating diseases that specifically target or affect the body's immune system and such immunological procedures/therapies strengthen the host's defenses to fight those infections. The immunotherapy-based treatments control the host's innate and adaptive immune responses, which are effective in treating different pathogenic microbial infections. As a result, diverse immunotherapeutic strategies are being researched more and more as alternative treatments for infectious diseases, leading to substantial improvements in our comprehension of the associations between pathogens and host immune system. In this review we will explore different immunotherapies and their usage for the assistance of a broad spectrum of infectious ailments caused by various human bacterial and fungal pathogenic microbes. We will discuss about the recent developments in the therapeutics against the growing human pathogenic microbial diseases and focus on the present and future of using immunotherapies to overcome these diseases. Graphical AbstractThe graphical abstract shows the therapeutic potential of different types of immunotherapies like vaccines, monoclonal antibodies-based therapies, etc., against different kinds of human Bacterial and Fungal microbial infections.

12.
Chem Biol Interact ; 377: 110468, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37030623

RESUMO

Polycystic ovary syndrome (PCOS), an intricate and multifaceted metabolic-endocrine disorder that typically affects 6-20% of women of reproductive age and accounts for 70-80% of all occurrences of infertility globally. In this study we focussed on the effect of diacerein (DIC) on steroidogenesis and follicle development in addition to the basic metabolic and endocrine problems which are associated with PCOS. Eighteen mature female parkes strain mice were separated into three groups at random with 6 animals in a group as follows: Group I, received water and normal diet for 66 days; group II received letrozole (LETZ) (6 mg/kg bw) for the induction of PCOS; Group III received LETZ (6 mg/kg) for 3 weeks followed by the administration of DIC (35 mg/kg) for 45 days. In our study we observed that mice with PCOS had irregular estrous cycle with increased LH/FSH, estrogen level and decline in expression of Kitl, Bmp, Cyp11a1, CYP19a1, Ar, lhr, Fshr and Esr1 as well as decreased SOD and CAT activity in ovary. Moreover, we observed increase in the expression of CYP17a1, as well as increase in serum cholesterol, triglycerides, testosterone, LH, VEGF and insulin levels. All these changes were reversed after the administration of DIC in PCOS mice. Diacerin administration reversed abnormalities in mice with PCOS by modulating the regulation of genes which are related to steroidogenesis and folliculogenesis.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Letrozol/efeitos adversos , Estrogênios , Modelos Animais de Doenças
13.
Biomedicines ; 11(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36979879

RESUMO

Around the world, polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic condition that typically affects 6-20% of females. Our study's major goal was to examine how chlorogenic acid (CGA) affected mice with endocrine and metabolic problems brought on by letrozole-induced PCOS. Group I served as the control for 81 days; Group II was given Letrozole (LETZ) orally at a dose of 6 mg/kg bw for 21 days to induce PCOS; Group III was given LETZ (6 mg/kg) for 21 days, followed by treatment with CGA (50 mg/kg bw daily) for 60 days. The study indicated that LETZ-treated mice displayed symptoms of PCOS, such as dyslipidemia, hyperinsulinemia, elevated testosterone, increases in inflammatory markers and malonaldehyde, and a decline in antioxidants (Ar, lhr, fshr, and esr2) in the ovaries. These alterations were affected when the mice were given CGA and were associated with reduced levels of adiponectin. Adiponectin showed interactions with hub genes, namely MLX interacting protein like (MLXIPL), peroxisome proliferator-activated receptor gamma Coactivator 1- alpha (PPARGC1), peroxisome proliferator-activated receptor gamma (Pparg), and adiponectin receptor 1 (Adipor1). Lastly, the gene ontology of adiponectin revealed that adiponectin was highly involved in biological processes. The findings from our research suggest that adiponectin has direct impacts on metabolic and endocrine facets of PCOS.

14.
Appl Biochem Biotechnol ; 195(10): 6212-6231, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36849711

RESUMO

Cell division is driven by nucleic acid metabolism, and thymidylate synthase (TYMS) catalyzes a rate-limiting step in nucleotide synthesis. As a result, thymidylate synthase has emerged as a critical target in chemotherapy. 5-Fluorouracil (5-FU) is currently being used to treat a wide range of cancers, including breast, pancreatic, head and neck, colorectal, ovarian, and gastric cancers The objective of this study was to establish a new methodology for the low-cost, one-pot synthesis of uracil derivatives (UD-1 to UD-5) and to evaluate their therapeutic potential in BC cells. One-pot organic synthesis processes using a single solvent were used for the synthesis of drug analogues of Uracil. Integrated bioinformatics using GEPIA2, UALCAN, and KM plotter were utilized to study the expression pattern and prognostic significance of TYMS, the key target gene of 5-fluorouracil in breast cancer patients. Cell viability, cell proliferation, and colony formation assays were used as in vitro methods to validate the in silico lead obtained. BC patients showed high levels of thymidylate synthase, and high expression of thymidylate synthase was found associated with poor prognosis. In silico studies indicated that synthesized uracil derivatives have a high affinity for thymidylate synthase. Notably, the uracil derivatives dramatically inhibited the proliferation and colonization potential of BC cells in vitro. In conclusion, our study identified novel uracil derivatives as promising therapeutic options for breast cancer patients expressing the augmented levels of thymidylate synthase.


Assuntos
Neoplasias da Mama , Uracila , Humanos , Feminino , Uracila/farmacologia , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Inibidores Enzimáticos/farmacologia , Neoplasias da Mama/tratamento farmacológico
15.
Vaccines (Basel) ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36851158

RESUMO

Comprehensive safety and efficacy studies of COVID-19 vaccines might reduce the apprehension of the general population about the adverse reactions and duration of protection offered by them. The study aimed to conduct a systemic review on the four COVID-19 vaccines (AstraZeneca, Pfizer, Moderna, and Janssen) approved in Saudi Arabia. The study was conducted by reviewing the published articles from electronic databases such as PubMed, Embase, Cochrane Library and Web of Science using the search terms "COVID-19", "Vaccine", "Safety", "Efficacy" and "Human trials" and as per the standard guidelines for systemic review. The review analyzed eighteen articles and the data from them were evaluated to analyze the safety and efficacy of the vaccines in different groups of population such as males, females, those above 18 years and people with co-morbidities. The common local reactions observed after vaccination were pain at the site of injection (40-70%), redness (16-30%), swelling (18-39%) and tenderness (20-40%). The systemic reactions reported were fever (40-60%), chills (12-23%), fatigue (44-65%), headache (30-42%) and muscle pain (15-40%). The efficacy was observed to be above the threshold value (60%) stipulated by the WHO. However, precautions need to be followed while vaccinating special groups of population such as those that are pregnant, lactating or experiencing severe illness. Additionally, the rare and serious adverse events reported remotely after vaccination need more studies.

16.
J Ethnopharmacol ; 300: 115727, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116611

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cousinia thomsonii is traditionally known for treating various diseases including joint pain, swelling, body ache, asthma, dermatitis, cough and arthritis. AIM OF THE STUDY: This study employs lipopolysaccharide induced inflammatory wistar-rat model to evaluate efficacy of Cousinia thomsonii active-extracts on the expression of crucial inflammatory markers viz. iNOS, PPAR-γ, Rel-A, COX-2 and serum analysis of CRP. MATERIALS AND METHODS: Methanol and aqueous extracts were administered orally at 25, 50, 100 mg/kg doses for 21 days. Serum was collected on 22nd day and rats were sacrificed to extract paw tissues. Dexamethasone (0.5 mg/kg) served as positive control. Immunoblotting and qPCR was used for expression analysis of iNOS, PPAR-γ, Rel-A, COX-2 respectively. ELISA was employed for evaluating CRP levels. Discovery-studio and Auto-Dock-Vina were used to check docking interactions of various identified compounds. RESULTS: Both extracts caused dose-dependent decline in iNOS, Rel-A, COX-2 and CRP levels, while there was a dose-dependent increase in PPAR-γ expression. Methanol extract dominated immunomodulatory potential as compared with the aqueous extract. The results of the GCMS revealed the presence of ten compounds. Some of these compounds include 1-Octacosanol, Ethyl Linoleate, 1-Heptacosanol, 1-Hexadecanol, 1-Dodecanol and Behenic alcohol having strong anti-inflammatory, antimicrobial, anti-acne and anti-viral activities. Molecular Docking scores were calculated between each target protein and selected compounds. The best affinity/interactions were observed between 1-Octacosanol towards iNOS, PPAR-γ, Rel-A, COX-2 and CRP with binding energy of -10.4, -11.1, -8.6, -9.9 and -7.9 (kcal/mol) respectively. These compounds may act as strong inhibitors for iNOS, Rel-A, COX-2 and CRP or as agonists for PPAR-γ; thereby inducing anti-inflammatory/immuno-modulatory activities. CONCLUSIONS: The results indicate that Cousinia thomsonii contains therapeutically active compounds and thus could serve as potential therapeutic regimen against diverse inflammatory diseases.


Assuntos
Anti-Infecciosos , Asteraceae , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Dexametasona , Dodecanol , Álcoois Graxos , Lipopolissacarídeos , Metanol , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos
17.
Toxicol Rep ; 9: 1938-1949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518462

RESUMO

Research question: Women are increasingly suffering from polycystic ovary syndrome (PCOS). Its pathophysiology is still unknown, though. The purpose of this study was to ascertain how gallic acid affected the pathophysiology of the ovary in an animal model of polycystic ovary syndrome. We also showed the potential mechanism of adiponectin involvement in endocrine metabolic changes in PCOS mice and the function of adiponectin, which appear to be frequent factors in PCOS. Design: Eighteen adult female Parkes strain mice (Age: 4-5 weeks) having body weight of 16-21 g were separated into three groups at random with 6 animals in each group as follows: Group I serving the control, received water and normal diet for 81 days; group II received oral gavage administration of letrozole (LETZ)(6 mg/kg b.w.daily), which was dissolved in 0.9 % NaCl solution for 21 days for the induction of PCOS and left untreated for 60 days; Group III received oral gavage administration of LETZ (6 mg/kg) for first 21 days followed by the administration of gallic acid (GA) (75 mg/kg b.w. orally daily) for 60 days. Results: We found LETZ-treated mice experienced PCOS-like symptoms, including increased Serum testosterone, LH/FSH ratio, body and ovarian weight, blood glucose, serum insulin levels and inflammatory Cytokines. We also found decreased serum estrogen, oxidant capacity and enzyme activity and altered ovarian cytoarchitecture, with multiple cysts apart from irregular estrous cycle. Furthermore, mRNA expression levels CYP11a, CYP19a1, Kitl, PTGS2 and Adipo R1 were decreased. Furthermore, LETZ-induced PCOS mice when treated with GA we observed decrease in testosterone, LH, LH/FSH ratio, blood glucose, serum insulin and inflammatory cytokines. GA treatment in PCOS mice also increased estrogen levels, and oxidant capacity as well as enzyme activity. Furthermore mRNA expression levels of CYP11a1, CYP19a1, KITL, PTGS2 and Adipo R1 were also increased in LETZ+GA treated mice. These changes were linked to lower levels of circulating adiponectin and were altered when the mice were administered with gallic acid. Conclusion: Gallic acid might be a potential therapy in treating PCOS by regulating endocrine and metabolic abnormalities that are brought on by a drop in adiponectin levels along with hyperandrogenism. Additionally, adiponectin seems to be a frequent factor in PCOS. In addition to reducing inflammation-related comorbidities linked to LETZ-induced PCOS, GA enhances mRNA expression levels CYP11a, CYP19a1, Kitl and PTGS2 and hence reduces endocrine and metabolic abnormalities.

18.
Med Oncol ; 39(12): 256, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224382

RESUMO

Breast cancer is one of the most aggressive and lethal types of transformation among women. An anomaly of normal fatty acid metabolism is acknowledged as a critical trigger for malignant transformations including breast cancer, but the prospect of targeting fatty acid metabolism for the treatment of malignancy has remained unrecognized so far. It has been observed that specific fatty acid metabolism genes are involved in the commencement and development of breast cancer. These specific genes have also been observed to be related to different isotypes/molecular subtypes of breast cancer. The main purpose of this study was to scrutinize the prognostic significance, functional role, and expression pattern of fatty acid metabolism genes. In-Silico tools like TCGA BrCA, Gepia2, Ualcan Analysis, UCSC Xena, Kaplan-Meier plotter, Bc-gene EXminer, String, gene ontology, and KEGG databases, were used to assess the expression pattern of the fatty acid metabolism genes in breast cancer patients and also among the different molecular sub-types of breast cancer. Differential gene expression analysis revealed dysregulation of FABP4, FABP5, PLIN1, ï»¿PLIN2, PLIN4, PLIN5, LPIN1, MGLL, PNPLA2, PNPLA7, ACSL1, and ACOX2 showing a fold change > ± 1.5. Also, most of these genes show downregulation in Ualcan analysis of different isotypes/molecular subtypes of breast cancer. The study reveals that the screened genes i.e., FABP4, FABP5, PLIN1, PLIN2, PLIN4, PLIN5, LPIN1, MGLL, PNPLA2, PNPLA7, ACSL1, and ACOX2 can be used as biomarkers that reveal poor prognosis and may serve as therapeutic targets for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Prognóstico
19.
Sci Rep ; 12(1): 17648, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271116

RESUMO

Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Ligantes , Linfócitos B/metabolismo , Biologia Computacional , Prognóstico
20.
Appl Microbiol Biotechnol ; 106(19-20): 6427-6440, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36121484

RESUMO

Antimicrobial resistance has not been a new phenomenon. Still, the number of resistant organisms, the geographic areas affected by emerging drug resistance, and the magnitude of resistance in a single organism are enormous and mounting. Disease and disease-causing agents formerly thought to be contained by antibiotics are now returning in new forms resistant to existing therapies. Antimicrobial resistance is one of the most severe and complicated health issues globally, driven by interrelated dynamics in humans, animals, and environmental health sectors. Coupled with various epidemiological factors and a limited pipeline for new antimicrobials, all these misappropriations allow the transmission of drug-resistant organisms. The problem is likely to worsen soon. Antimicrobial resistance in general and antibiotic resistance in particular is a shared global problem. Actions taken by any single country can adversely or positively affect the other country. Targeted coordination and prevention strategies are critical in stopping the spread of antibiotic-resistant organisms and hence its overall management. This article has provided in-depth knowledge about various methods that can help mitigate the emergence and spread of antimicrobial resistance globally. KEY POINTS: • Overview of antimicrobial resistance as a global challenge and explain various reasons for its rapid progression. • Brief about the intrinsic and acquired resistance to antimicrobials and development of antibiotic resistance in bacteria. • Systematically organized information is provided on different strategies for tackling antimicrobial resistance for the welfare of human health.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...