Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biomedicines ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38540194

RESUMO

In Long COVID, dysfunction in the pituitary-adrenal axis and alterations in immune cells and inflammatory status are warned against. We performed a prospective study in a cohort of 42 patients who suffered COVID-19 at least 6 months before attending the Long COVID unit at Althaia Hospital. Based on Post-COVID Functional Status, 29 patients were diagnosed with Long COVID, while 13 were deemed as recovered. The hormones of the pituitary-adrenal axis, adrenocorticotropin stimulation test, and immune cell profiles and inflammatory markers were examined. Patients with Long COVID had significantly lower EuroQol and higher mMRC scores compared to the recovered individuals. Their symptoms included fatigue, myalgia, arthralgia, persistent coughing, a persistent sore throat, dyspnoea, a lack of concentration, and anxiety. We observed the physiological levels of cortisol and adrenocorticotropin in individuals with or without Long COVID. The results of the adrenocorticotropin stimulation test were similar between both groups. The absolute number of neutrophils was lower in the Long COVID patients compared to recovered individuals (p < 0.05). The total count of B lymphocytes remained consistent, but Long COVID patients had a higher percentage of mature B cells compared to recovered participants (p < 0.05) and exhibited a higher percentage of circulating resident memory CD8+ T cells (p < 0.05) and Treg-expressing exonucleases (p < 0.05). Our findings did not identify adrenal dysfunction related to Long COVID, nor an association between adrenal function and clinical symptoms. The data indicated a dysregulation in certain immune cells, pointing to immune activation. No overt hyperinflammation was observed in the Long COVID group.

4.
Biomedicines ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37626797

RESUMO

Antiphospholipid antibodies (APLA) are strongly associated with thrombosis seen in patients with antiphospholipid syndrome. In COVID-19, thrombosis has been observed as one of the main comorbidities. In patients hospitalised for COVID-19, we want to check whether APLA positivity is associated with COVID-19-related thrombosis, inflammation, severity of disease, or long COVID-19. We enrolled 92 hospitalised patients with COVID-19 between March and April 2020 who were tested for 18 different APLAs (IgG and IgM) with a single line-immunoassay test. A total of 30 healthy blood donors were used to set the cut-off for each APLA positivity. Of the 92 COVID-19 inpatients, 30 (32.61%; 95% CI [23.41-43.29]) tested positive for APLA, of whom 10 (33.3%; 95% CI [17.94-52.86]) had more than one APLA positivity. Anti-phosphatidylserine IgM positivity was described in 5.4% of inpatients (n = 5) and was associated with the occurrence of COVID-19-related thrombosis (p = 0.046). Anti-cardiolipin IgM positivity was the most prevalent among the inpatients (n = 12, 13.0%) and was associated with a recorded thrombosis in their clinical history (p = 0.044); however, its positivity was not associated with the occurrence of thrombosis during their hospitalisation for COVID-19. Anti-phosphatidylinositol IgM positivity, with a prevalence of 5.4% (n = 5), was associated with higher levels of interleukin (IL)-6 (p = 0.007) and ferritin (p = 0.034). Neither of these APLA positivities was a risk factor for COVID-19 severity or a predictive marker for long COVID-19. In conclusion, almost a third of COVID-19 inpatients tested positive for at least one APLA. Anti-phosphatidylserine positivity in IgM class was associated with thrombosis, and anti-phosphatidylinositol positivity in IgM class was associated with inflammation, as noticed by elevated levels of IL-6. Thus, testing for non-criteria APLA to assess the risk of clinical complications in hospitalised COVID-19 patients might be beneficial. However, they were not related to disease severity or long COVID-19.

6.
Stroke ; 54(7): 1875-1887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226775

RESUMO

BACKGROUND: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection. METHODS: Using a model of transient cerebral ischemia in mice, we explored the relationship between immunometabolic dysregulation, gut barrier dysfunction, gut microbial alterations, and bacterial colonization of organs, and we explored the effect of several drug treatments. RESULTS: Stroke-induced lymphocytopenia and widespread colonization of lung and other organs by opportunistic commensal bacteria. This effect correlated with reduced gut epithelial barrier resistance, and a proinflammatory sway in the gut illustrated by complement and nuclear factor-κB activation, reduced number of gut regulatory T cells, and a shift of gut lymphocytes to γδT cells and T helper 1/T helper 17 phenotypes. Stroke increased conjugated bile acids in the liver but decreased bile acids and short-chain fatty acids in the gut. Gut fermenting anaerobic bacteria decreased while opportunistic facultative anaerobes, notably Enterobacteriaceae, suffered an expansion. Anti-inflammatory treatment with a nuclear factor-κB inhibitor fully abrogated the Enterobacteriaceae overgrowth in the gut microbiota induced by stroke, whereas inhibitors of the neural or humoral arms of the stress response were ineffective at the doses used in this study. Conversely, the anti-inflammatory treatment did not prevent poststroke lung colonization by Enterobacteriaceae. CONCLUSIONS: Stroke perturbs homeostatic neuro-immuno-metabolic networks facilitating a bloom of opportunistic commensals in the gut microbiota. However, this bacterial expansion in the gut does not mediate poststroke infection.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Acidente Vascular Cerebral , Camundongos , Animais , NF-kappa B , Bactérias/genética , Acidente Vascular Cerebral/complicações , Pulmão
7.
Aging (Albany NY) ; 15(10): 4012-4034, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37219418

RESUMO

Cellular senescence is a dynamic stress response process that contributes to aging. From initiation to maintenance, senescent cells continuously undergo complex molecular changes and develop an altered transcriptome. Understanding how the molecular architecture of these cells evolve to sustain their non-proliferative state will open new therapeutic avenues to alleviate or delay the consequences of aging. Seeking to understand these molecular changes, we studied the transcriptomic profiles of endothelial replication-induced senescence and senescence induced by the inflammatory cytokine, TNF-α. We previously reported gene expressional pattern, pathways, and the mechanisms associated with upregulated genes during TNF-α induced senescence. Here, we extend our work and find downregulated gene signatures of both replicative and TNF-α senescence were highly overlapped, involving the decreased expression of several genes associated with cell cycle regulation, DNA replication, recombination, repair, chromatin structure, cellular assembly, and organization. We identified multiple targets of p53/p16-RB-E2F-DREAM that are essential for proliferation, mitotic progression, resolving DNA damage, maintaining chromatin integrity, and DNA synthesis that were repressed in senescent cells. We show that repression of multiple target genes in the p53/p16-RB-E2F-DREAM pathway collectively contributes to the stability of the senescent arrest. Our findings show that the regulatory connection between DREAM and cellular senescence may play a potential role in the aging process.


Assuntos
Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromatina , Senescência Celular/genética , Reparo do DNA/genética
8.
Placenta ; 136: 29-34, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028222

RESUMO

INTRODUCTION: Obstetric antiphospholipid syndrome (OAPS) is an autoimmune disease related to antiphospholipid antibodies (aPL) with primaryinflammatory injury followed by clot cascade activation and thrombus formation. Complement system activation and their participation in aPL-related thrombosis is unclosed. METHODS: We haveanalysed adverse pregnancy outcomes (APO) related to low complement (LC) levels in a cohort of 1048 women fulfilling classification criteria for OAPS. RESULTS: Overall, 223 (21.3%) women presented LC values, during pregnancy. The length of pregnancy was shorter in OAPS women with LC compared to those with normal complement (NC) (median: 33 weeks, interquartile range: [24-38] vs. 35 weeks [27-38]; p = 0.022). Life new-born incidence was higher in patients with NC levels than in those with LC levels (74.4% vs. 67.7%; p = 0.045). Foetal losses were more related to women with triple or double aPL positivity carrying LC than NC values (16.3% vs. 8.0% NC; p = 0.027). Finally, some placental vasculopathies were affected in OAPS patients with LC as late Foetal Growth Restriction (FGR >34 weeks) rise to 7.2% in women with LC vs. 3.2% with NC (p = 0.007). DISCUSSION: Data from our registry indicate that incidence of APO was higher in OAPS women with LC levels and some could be reverted by the correct treatment.


Assuntos
Síndrome Antifosfolipídica , Complicações na Gravidez , Feminino , Gravidez , Humanos , Masculino , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/epidemiologia , Placenta , Anticorpos Antifosfolipídeos , Sistema de Registros
9.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361608

RESUMO

Antiphospholipid syndrome (APS) is a systemic autoimmune condition characterised by the presence of antiphospholipid antibodies (aPL) associated with vascular thrombosis and/or pregnancy complications. In a cohort of 74 yet diagnosed APS individuals fulfilling Sydney laboratory criteria (twice positive for lupus anticoagulant, anticardiolipin, aCL, and/or anti-ß2glycoprotein I, aß2GPI), 33 out of 74 were obstetric APS (OAPS) and 41 thrombotic APS (TAPS) patients. 39% of TAPS patients were women. Although aPL detection was persistent, we observed an oscillatory aPL positivity in 56.7% and a transient seroconversion in 32.4% of APS patients at enrolment. Thus, we tested their sera in a line immunoassay that simultaneously detected IgG or IgM for criteria (aCL and aß2GPI) and non-criteria (anti-phosphatidylserine, aPS; anti-phosphatidic acid, aPA; anti-phosphatidylinositol, aPI; anti-annexin 5, aA5; anti-prothrombin, aPT; anti-phosphatidylethanolamine; anti-phosphatidylglycerol, and anti-phosphatidylcholine) aPL. OAPS and TAPS patients displayed different but overlapping clusters based on their aPL reactivities. Specifically, while OAPS patients showed higher aPA, aPS, aA5, aß2GPI and aPT IgM levels than TAPS patients, the latter displayed higher reactivity in aCL, aPI and aA5 IgG. Eventually, with a cut-off of the 99th percentile established from a population of 79 healthy donors, TAPS patients significantly tested more positive for aCL and aA5 IgG than OAPS patients, who tested more positive for aPA, aPS and aß2GPI IgM. Transiently seronegative APS patients showed non-criteria aPL positivity twice in sera obtained 3 months apart. Overall, our data show that APS patients presented clusters of aPL that define different profiles between OAPS and TAPS, and persistent non-criteria aPL positivity was observed in those who are transiently seronegative.


Assuntos
Síndrome Antifosfolipídica , Trombose , Gravidez , Humanos , Feminino , Masculino , Anticorpos Antifosfolipídeos , beta 2-Glicoproteína I , Trombose/etiologia , Imunoglobulina G , Imunoglobulina M
10.
Autoimmun Rev ; 21(6): 103101, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35452853

RESUMO

OBJECTIVE: Antiphospholipid antibodies (aPL) are related to poor pregnancy outcomes, but their effect on embryo implantation is unclear. We aimed to assess the prevalence of different aPL in women with recurrent implantation failure (RIF). METHODS: We searched studies in PubMed (MEDLINE), Scopus and Cochrane Library. Quality of studies was scored by the Newcastle-Ottawa Scale and risk of bias assessment by items described in RevMan5 software. Statistical analyses were made using random-effects model and presented as pooled Odds Ratio (OR), 95% confidence interval (CI). Heterogeneity was assessed by I2% and D2%. RESULTS: This systematic review and meta-analysis included 17 studies and showed a high degree of variability in aPL positivity in RIF. In the latter, the risk of bias assessment suggested unclear bias on study performance with a median sample size and interquartile range for RIF patients and fertile women of 96 (57-417) and 100 (60.5-202.5), respectively. Among the criteria aPL, IgG anticardiolipin autoantibodies (OR 5.02, 95% CI [1.95, 12.93]) were associated with RIF. Within the non-criteria aPL, anti-ß2 glycoprotein I-IgA (OR 64.8, 95% CI [9.74, 431.0]), and antiphosphatidylglycerol-IgG and IgM (OR 10.74, 95% CI [5.25, 22.0]; OR 4.26, 95% CI [1.76,10.31]; respectively) were associated with RIF, too. CONCLUSIONS: Anticardiolipin-IgG is a prevalent autoantibody in women with RIF. Three other non-criteria aPL, aß2GP I-IgA, aPG-IgG and aPG-IgM also present a positive rate in RIF. Overall, these results advise about testing them as indicators of RIF risk in women seeking IVF treatment.


Assuntos
Anticorpos Anticardiolipina , Síndrome Antifosfolipídica , Anticorpos Antifosfolipídeos , Implantação do Embrião , Feminino , Humanos , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Gravidez
11.
Clin Cancer Res ; 28(11): 2449-2460, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302601

RESUMO

PURPOSE: Immune checkpoint inhibitors combined with antiangiogenic agents produce benefits in the treatment of advanced hepatocellular carcinoma (HCC). We investigated the efficacy and immunomodulatory activity of cabozantinib alone and combined with anti-PD1 in experimental models of HCC, and explored the potential target population that might benefit from this combination. EXPERIMENTAL DESIGN: C57BL/6J mice bearing subcutaneous Hepa1-6 or Hep53.4 tumors received cabozantinib, anti-PD1, their combination, or placebo. Tumor and blood samples were analyzed by flow cytometry, IHC, transcriptome, and cytokine profiling. Cabozantinib-related effects were validated in a colorectal cancer patient-derived xenograft model. Transcriptomic data from three human HCC cohorts (cohort 1: n = 167, cohort 2: n = 57, The Cancer Genome Atlas: n = 319) were used to cluster patients according to neutrophil features, and assess their impact on survival. RESULTS: The combination of cabozantinib and anti-PD1 showed increased antitumor efficacy compared with monotherapy and placebo (P < 0.05). Cabozantinib alone significantly increased neutrophil infiltration and reduced intratumor CD8+PD1+ T-cell proportions, while the combination with anti-PD1 further stimulated both effects and significantly decreased regulatory T cell (Treg) infiltration (all P < 0.05). In blood, cabozantinib and especially combination increased the proportions of overall T cells (P < 0.01) and memory/effector T cells (P < 0.05), while lowering the neutrophil-to-lymphocyte ratio (P < 0.001 for combination). Unsupervised clustering of human HCCs revealed that high tumor enrichment in neutrophil features observed with the treatment combination was linked to less aggressive tumors with more differentiated and less proliferative phenotypes. CONCLUSIONS: Cabozantinib in combination with anti-PD1 enhanced antitumor immunity by bringing together innate neutrophil-driven and adaptive immune responses, a mechanism of action which favors this approach for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anilidas , Animais , Carcinoma Hepatocelular/patologia , Humanos , Imunidade , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Receptor de Morte Celular Programada 1 , Piridinas
12.
J Clin Med ; 11(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160128

RESUMO

Antiphospholipid syndrome is an autoimmune disorder characterized by vascular thrombosis and/or pregnancy morbidity associated with persistent antiphospholipid antibody positivity. Cases fulfilling the Sydney criteria for obstetric morbidity with no previous thrombosis are known as obstetric antiphospholipid syndrome (OAPS). OAPS is the most identified cause of recurrent pregnancy loss and late-pregnancy morbidity related to placental injury. Cases with incomplete clinical or laboratory data are classified as obstetric morbidity APS (OMAPS) and non-criteria OAPS (NC-OAPS), respectively. Inflammatory and thrombotic mechanisms are involved in the pathophysiology of OAPS. Trophoblasts, endothelium, platelets and innate immune cells are key cellular players. Complement activation plays a crucial pathogenic role. Secondary placental thrombosis appears by clot formation in response to tissue factor activation. New risk assessment tools could improve the prediction of obstetric complication recurrences or thromboses. The standard-of-care treatment consists of low-dose aspirin and prophylactic low molecular weight heparin. In refractory cases, the addition of hydroxychloroquine, low-dose prednisone or IVIG improve pregnancy outcomes. Statins and eculizumab are currently being tested for treating selected OAPS women. Finally, we revisited recent insights and concerns about the pathophysiology, diagnosis and management of OAPS.

13.
Autoimmun Rev ; 20(12): 102982, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718168

RESUMO

Identification of differentially expressed proteins in antiphospholipid syndrome (APS) is a developing area of research for unique profiles of this pathology. Advances in technologies of mass spectrometry brings improvements in proteomics and results in assessment of soluble or cellular proteins which could be candidates for clinical biomarkers of primary APS. The use of blood as a source of proteins ease the acquisition of samples for proteomics analyses and later for disease diagnosis. We performed a systematic review to explore the proteomics studies carried out in circulating released proteins (serum, plasma) or cellular proteins (monocytes and platelets) of APS patients. The study groups differentiate among clinical APS cases with the aim to translate molecular findings to disease stratification and to improve APS diagnosis and prognosis. These studies also include the unravelling of new autoantibodies in non-criteria APS or how post-translational protein modifications provides clues about the pathological mechanisms of antigen-autoantibody recognition. Herein, we identified 82 proteins that were dysregulated in APS across eleven studies. Enrichment analysis revealed its connection to cellular activation and degranulation that eventually leads to thrombosis as the main biological process highlighted by these studies. Validation of APS-relevant proteins by functional and mechanistic studies will be essential for patient stratification and the development of targeted therapies for every clinical subtype of APS.


Assuntos
Síndrome Antifosfolipídica , Fenômenos Biológicos , Trombose , Síndrome Antifosfolipídica/diagnóstico , Biomarcadores , Humanos , Proteômica
14.
J Neuroinflammation ; 18(1): 127, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092245

RESUMO

Stroke produces a powerful inflammatory cascade in the brain, but also a suppression of the peripheral immune system, which is also called stroke-induced immunosuppression (SIIS). The main processes that lead to SIIS are a shift from a lymphocyte phenotype T-helper (Th) 1 to a Th2 phenotype, a decrease of the lymphocyte counts and NK cells in the blood and spleen, and an impairment of the defense mechanisms of neutrophils and monocytes. The direct clinical consequence of SIIS in stroke patients is an increased susceptibility to stroke-associated infections, which is enhanced by clinical factors like dysphagia. Among these infections, stroke-associated pneumonia (SAP) is the one that accounts for the highest impact on stroke outcome, so research is focused on its early diagnosis and prevention. Biomarkers indicating modifications in SIIS pathways could have an important role in the early prediction of SAP, but currently, there are no individual biomarkers or panels of biomarkers that are accurate enough to be translated to clinical practice. Similarly, there is still no efficient therapy to prevent the onset of SAP, and clinical trials testing prophylactic antibiotic treatment and ß-blockers have failed. However, local immunomodulation could open up a new research opportunity to find a preventive therapy for SAP. Recent studies have focused on the pulmonary immune changes that could be caused by stroke similarly to other acquired brain injuries. Some of the traits observed in animal models of stroke include lung edema and inflammation, as well as inflammation of the bronchoalveolar lavage fluid.


Assuntos
Terapia de Imunossupressão , Infecções/complicações , Infecções/diagnóstico , Pneumonia/complicações , Pneumonia/prevenção & controle , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/imunologia , Animais , Biomarcadores , Citocinas , Humanos , Infecções/imunologia , Inflamação/etiologia , Inflamação/imunologia , Pulmão/imunologia , Pulmão/patologia , Linfócitos/imunologia , Linfócitos/patologia , Monócitos/imunologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Pneumonia/diagnóstico
15.
Cell Rep ; 33(3): 108291, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086061

RESUMO

Brain CD11c+ cells share features with microglia and dendritic cells (DCs). Sterile inflammation increases brain CD11c+ cells, but their phenotype, origin, and functions remain largely unknown. We report that, after cerebral ischemia, microglia attract DCs to the inflamed brain, and astroglia produce Flt3 ligand, supporting development and expansion of CD11c+ cells. CD11c+ cells in the inflamed brain are a complex population derived from proliferating microglia and infiltrating DCs, including a major subset of OX40L+ conventional cDC2, and also cDC1, plasmacytoid, and monocyte-derived DCs. Despite sharing certain morphological features and markers, CD11c+ microglia and DCs display differential expression of pattern recognition receptors and chemokine receptors. DCs excel CD11c- and CD11c+ microglia in the capacity to present antigen through MHCI and MHCII. Of note, cDC1s protect from brain injury after ischemia. We thus reveal aspects of the dynamics and functions of brain DCs in the regulation of inflammation and immunity.


Assuntos
Antígenos CD11/metabolismo , Células Dendríticas/metabolismo , Microglia/metabolismo , Animais , Antígenos/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Antígenos CD11/genética , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Citocinas/metabolismo , Células Dendríticas/fisiologia , Encefalite/imunologia , Encefalite/metabolismo , Citometria de Fluxo , Inflamação/imunologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo
16.
Front Cell Neurosci ; 14: 206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719588

RESUMO

Ischemic stroke causes brain tissue damage and may release central nervous system (CNS)-specific peptides to the periphery. Neural antigen presentation in the lymphoid tissue could prime immune cells and result in adaptive immune response. However, autoimmune responses against neural antigens are not commonly uncovered after stroke. We studied the brain tissue of nine fatal stroke cases and the blood of a cohort of 13 patients and 11 controls. Flow cytometry carried out in three of the brain samples showed CD8 and CD4 T cells in the cerebrospinal fluid (CSF) of the ventricles in the patient deceased 1 day poststroke, T cells with an activated phenotype in the CSF of the patient that died at day 6, and T cells in the ischemic brain tissue in the patient deceased 140 days after stroke onset. Immunohistochemistry showed higher T cell numbers in the core of the lesion of the patient deceased 18 days post-stroke than in the patients deceased from 1 to 5 days post-stroke. In blood samples, we studied whether lymphocytes were primed in the periphery against neural antigens at sequential times (on admission, day 5, and day 90) after stroke. T lymphocytes of stroke patients produced IFN-γ and TNF-α and responded to MBP peptides by increasing their production of TNF-α and IL-10 at admission, but not at later time points. In contrast, IL-4 producing T cells showed progressive increases. Higher percentages of TNF-α producing T lymphocytes at admission were independently associated with poorer outcomes at 90 days. However, we did not detect T cell responses to neural-antigen stimulation 90 days post-stroke. Altogether the results suggest acute T cell priming in the periphery in acute stroke, T cell trafficking from the CSF to the ischemic brain tissue, and the existence of active mechanisms preventing autoreactivity.

17.
Autoimmun Rev ; 19(7): 102569, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32376394

RESUMO

Severe Acute Respiratory Syndrome related to Coronavirus-2 (SARS-CoV-2), coronavirus disease-2019 (COVID-19) may cause severe illness in 20% of patients. This may be in part due to an uncontrolled immune-response to SARS-CoV-2 infection triggering a systemic hyperinflammatory response, the so-called "cytokine storm". The reduction of this inflammatory immune-response could be considered as a potential therapeutic target against severe COVID-19. The relationship between inflammation and clot activation must also be considered. Furthermore, we must keep in mind that currently, no specific antiviral treatment is available for SARS-CoV-2. While moderate-severe forms need in-hospital surveillance plus antivirals and/or hydroxychloroquine; in severe and life-threating subsets a high intensity anti-inflammatory and immunomodulatory therapy could be a therapeutic option. However, right data on the effectiveness of different immunomodulating drugs are scarce. Herein, we discuss the pathogenesis and the possible role played by drugs such as: antimalarials, anti-IL6, anti-IL-1, calcineurin and JAK inhibitors, corticosteroids, immunoglobulins, heparins, angiotensin-converting enzyme agonists and statins in severe COVID-19.


Assuntos
Infecções por Coronavirus/terapia , Imunomodulação , Pneumonia Viral/terapia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anticoagulantes/uso terapêutico , Antimaláricos/uso terapêutico , Antivirais , Betacoronavirus , COVID-19 , Citocinas/antagonistas & inibidores , Glucocorticoides/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Janus Quinases/antagonistas & inibidores , Pandemias , Fatores de Risco , SARS-CoV-2
18.
J Cereb Blood Flow Metab ; 40(1_suppl): S98-S116, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32151226

RESUMO

Inflammatory Ly6ChiCCR2+ monocytes infiltrate the brain after stroke but their functions are not entirely clear. We report that CCR2+ monocytes and CCR2+ lymphocytes infiltrate the brain after permanent ischemia. To underscore the role of CCR2+ monocytes, we generated mice with selective CCR2 deletion in monocytes. One day post-ischemia, these mice showed less infiltrating monocytes and reduced expression of pro-inflammatory cytokines, markers of alternatively macrophage activation, and angiogenesis. Accordingly, Ly6Chi monocytes sorted from the brain of wild type mice 24 h post-ischemia expressed pro-inflammatory genes, M2 genes, and pro-angiogenic genes. Flow cytometry showed heterogeneous phenotypes within the infiltrating Ly6ChiCCR2+ monocytes, including a subgroup of Arginase-1+ cells. Mice with CCR2-deficient monocytes displayed a delayed inflammatory rebound 15 days post-ischemia that was not found in wild type mice. Furthermore, they showed reduced angiogenesis and worse behavioral performance. Administration of CCR2+/+ bone-marrow monocytes to mice with CCR2-deficient monocytes did not improve the behavioral performance suggesting that immature bone-marrow monocytes lack pro-reparative functions. The results show that CCR2+ monocytes contribute to acute post-ischemic inflammation and participate in functional recovery. The study unravels heterogeneity in the population of CCR2+ monocytes infiltrating the ischemic brain and suggests that pro-reparative monocyte subsets promote functional recovery after ischemic stroke.


Assuntos
Encéfalo/irrigação sanguínea , AVC Isquêmico/metabolismo , Monócitos/metabolismo , Receptores CCR2/deficiência , Animais , Modelos Animais de Doenças , AVC Isquêmico/patologia , Masculino , Camundongos , Monócitos/patologia , Neovascularização Fisiológica
19.
Neurobiol Dis ; 137: 104722, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926295

RESUMO

Central nervous system (CNS)-border associated macrophages (BAMs) maintain their steady-state population during adulthood and are not replaced by circulating monocytes under physiological conditions. Their roles in CNS integrity and functions under pathological conditions remain largely unknown. Until recently, BAMs and microglia could not be unequivocally distinguished due to expression of common macrophage markers. We investigated the transcriptional profiles of immunosorted BAMs from rat sham-operated and ischemic brains using RNA sequencing. We found that BAMs express the distinct transcriptional signature than microglia and infiltrating macrophages. The enrichment of functional groups associated with the cell cycle in CD163+ cells isolated 3 days after the ischemic injury indicates the proliferative capacity of these cells. The increased number of CD163+ cells 3 days post-ischemia was corroborated by flow cytometry and detecting the increased number of CD163+ cells positive for a proliferation marker Ki67 at perivascular spaces. CD163+ cells in the ischemic brains up-regulated many inflammatory genes and parenchymal CD163+ cells expressed iNOS, which indicates acquisition of a pro-inflammatory phenotype. In mice, BAMs typically express CD206 and we found a subset of these cells expressing CD169. Chimeric mice generated by transplanting bone marrow of donor Cx3cr1gfpCCR2rfp mice to wild type hosts showed an increased number of CX3CR1+CD169+ perivascular macrophages 3 days post-ischemia. Furthermore, these cells accumulated in the brain parenchyma and we detected replacement of perivascular macrophages by peripheral monocytic cells in the sub-acute phase of stroke. In line with the animal results, post-mortem brain samples from human ischemic stroke cases showed time-dependent accumulation of CD163+ cells in the ischemic parenchyma. Our findings indicate a unique transcriptional signature of BAMs, their local proliferation and migration of inflammatory BAMs to the brain parenchyma after stroke in animal models and humans.


Assuntos
Isquemia Encefálica/metabolismo , Sistema Nervoso Central/metabolismo , AVC Isquêmico/metabolismo , Macrófagos/metabolismo , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Macrófagos/patologia , Microglia/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Ratos Wistar
20.
Brain Behav Immun ; 82: 406-421, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525508

RESUMO

The establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CX3CR1+ iPSC-microglia (cultured within a neural environment) and round-shaped CX3CR1- iPSC-macrophages can easily be differentiated from newly established murine CX3CR1eGFP/+CCR2RFP/+ iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CX3CR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide + interferon γ or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CX3CR1eGFP/+CCR2RFP/+ mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuroimunomodulação/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Células-Tronco Pluripotentes Induzidas/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Neuroimunomodulação/imunologia , Fenótipo , Receptores CCR2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...