Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674812

RESUMO

BACKGROUND: The prolonged activation of microglia and excessive production of pro-inflammatory cytokines can lead to chronic neuroinflammation, which is an important pathological feature of Parkinson's disease (PD). We have previously reported the protective effect of Vitamin C (Vit C) on a mouse model of PD. However, its effect on microglial functions in neuroinflammation remains to be clarified. Glycogen synthase kinase 3ß (GSK3ß) is a serine/threonine kinase having a role in driving inflammatory responses, making GSK3ß inhibitors a promising target for anti-inflammatory research. METHODS: In this study, we investigated the possible involvement of GSK3ß in Vit C neuroprotective effects by using a well-known 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and a cellular model of neuroinflammation, represented by Lipopolysaccharide (LPS)-activated BV-2 microglial cells. RESULTS: We demonstrated the ability of Vit C to decrease the expression of different mediators involved in the inflammatory responses, such as TLR4, p-IKBα, and the phosphorylated forms of p38 and AKT. In addition, we demonstrated for the first time that Vit C promotes the GSK3ß inhibition by stimulating its phosphorylation at Ser9. CONCLUSION: This study evidenced that Vit C exerts an anti-inflammatory function in microglia, promoting the upregulation of the M2 phenotype through the activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Anti-Inflamatórios , Ácido Ascórbico , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Ácido Ascórbico/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fosforilação/efeitos dos fármacos , Serina/metabolismo
2.
Endocrine ; 81(3): 492-502, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306934

RESUMO

PURPOSE: In type 2 Diabetes, ß-cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (dedifferentiation, decline of glucose-stimulated insulin secretion). Apoptosis and dysfunction are caused, at least in part, by glucotoxicity, in which increased flux of glucose in the hexosamine biosynthetic pathway plays a role. In this study, we sought to clarify whether increased hexosamine biosynthetic pathway flux affects another important aspect of ß-cell physiology, that is ß-cell-ß-cell homotypic interactions. METHODS: We used INS-1E cells and murine islets. The expression and cellular distribution of E-cadherin and ß-catenin was evaluated by immunofluorescence, immunohistochemistry and western blot. Cell-cell adhesion was examined by the hanging-drop aggregation assay, islet architecture by isolation and microscopic observation. RESULTS: E-cadherin expression was not changed by increased hexosamine biosynthetic pathway flux, however, there was a decrease of cell surface, and an increase in intracellular E-cadherin. Moreover, intracellular E-cadherin delocalized, at least in part, from the Golgi complex to the endoplasmic reticulum. Beta-catenin was found to parallel the E-cadherin redistribution, showing a dislocation from the plasmamembrane to the cytosol. These changes had as a phenotypic consequence a decreased ability of INS-1E to aggregate. Finally, in ex vivo experiments, glucosamine was able to alter islet structure and to decrease surface abundandance of E-cadherin and ß-catenin. CONCLUSION: Increased hexosamine biosynthetic pathway flux alters E-cadherin cellular localization both in INS-1E cells and murine islets and affects cell-cell adhesion and islet morphology. These changes are likely caused by alterations of E-cadherin function, highlighting a new potential target to counteract the consequences of glucotoxicity on ß-cells.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , beta Catenina/metabolismo , Hexosaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adesão Celular , Vias Biossintéticas , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Caderinas/metabolismo , Ilhotas Pancreáticas/metabolismo
3.
Int J Mol Sci ; 23(23)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499472

RESUMO

Colorectal cancer (CRC) is among the best examples for depicting the relationship between inflammation and cancer. The introduction of new therapeutics targeting inflammatory mediators showed a marked decrease in the overall risk of CRC, although their chemopreventive potential is still debated. Specifically, a monoclonal antibody that blocks tumor necrosis factor (TNF), infliximab, increases CRC risk in inflammatory bowel disease patients. To address the axis between TNF and CRC development and progression, we depleted the Tnf from our previously established murine model of colitis-associated cancer (CAC), the Winnie-ApcMin/+ line. We characterized the new Winnie-APCMin/+-TNF-KO line through macroscopical and microscopical analyses. Surprisingly, the latter demonstrated that the deletion of Tnf in Winnie-ApcMin/+ mice resulted in an initial reduction in dysplastic lesion incidence in 5-week-old mice followed by a faster disease progression at 8 weeks. Histological data were confirmed by the molecular profiling obtained from both the real-time PCR analysis of the whole tissue and the RNA sequencing of the macrodissected tumoral lesions from Winnie-APCMin/+-TNF-KO distal colon at 8 weeks. Our results highlight that TNF could exert a dual role in CAC, supporting the promotion of neoplastic lesions onset in the early stage of the disease while inducing their reduction during disease progression.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Camundongos , Animais , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/complicações , Inflamação/complicações , Fator de Necrose Tumoral alfa/genética , Progressão da Doença , Neoplasias Colorretais/genética , Colite/complicações , Colite/genética , Modelos Animais de Doenças
4.
Biology (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34827148

RESUMO

Vitamin C (Vit C) is anutrient present in many foods, particularly citrus fruits, green vegetables, tomatoes, and potatoes. Vit C is studied for its applications in the prevention and management of different pathologies, including neurodegenerative diseases. Neuroinflammation is a defense mechanism activated by a stimulus or an insult that is aimed at the preservation of the brain by promoting tissue repair and removing cellular debris; however, persistent inflammatory responses are detrimental and may lead to the pathogenesis and progression of neurodegenerative diseases like Parkinson's disease (PD) and Alzheimer's disease. PD is one of the most common chronic progressive neurodegenerative disorders, and oxidative stress is one of the most important factors involved in its pathogenesis and progression.Due to this, research on antioxidant and anti-inflammatory compounds is an important target for counteracting neurodegenerative diseases, including PD. In the central nervous system, the presence of Vit C in the brain is higher than in other body districts, but why and how this occurs is still unknown. In this research, Vit C, with its anti-inflammatory and anti-oxidative properties, is studied to better understand its contribution to brain protection; in particular, we have investigated the neuroprotective effects of Vit C in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of PD and its role in the modulation of neuroinflammation. First, we observed that Vit C significantly decreased the MPTP-induced loss of tyrosine hydroxylase (TH)-positive dopaminergic neuronal cells in the substantia nigra, as well as microglial cell activation and astrogliosis. Furthermore, gait and spontaneous locomotor activity, evaluated by an automated treadmill and the Open Field test, respectively, were partially ameliorated by Vit C treatment in MPTP-intoxicated animals. In relation to neuroinflammation, results show that Vit C reduced the protein and mRNA expression of inflammatory cytokines such as IL-6, TLR4, TNF-α, iNOS, and CD40, while anti-inflammatory proteins such as IL-10, CD163, TGF-ß, and IL-4 increased. Interestingly, we show for the first time that Vit C reduces neuroinflammation by modulating microglial polarization and astrocyte activation. Moreover, Vit C was able to reduce NLRP3 activation, which is linked to the pathogenesis of many inflammatory diseases, including neuroinflammatory disorders. In conclusion, our study provides evidence that Vit C may represent a new promising dietary supplement for the prevention and alleviation of the inflammatory cascade of PD, thus contributing to neuroprotection.

5.
Front Endocrinol (Lausanne) ; 11: 588685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240221

RESUMO

The endoplasmic reticulum stress and the unfolded protein response are triggered following an imbalance between protein load and protein folding. Until recently, two possible outcomes of the unfolded protein response have been considered: life or death. We sought to substantiate a third alternative, dedifferentiation, mesenchymal shift, and activation of the antioxidant response by using typical endocrine cells, i.e. thyroid cells. The thyroid is a unique system both of endoplasmic reticulum stress (a single protein, thyroglobulin represents the majority of proteins synthesized in the endoplasmic reticulum by the thyrocyte) and of polarized epithelium (the single layer of thyrocytes delimiting the follicle). Following endoplasmic reticulum stress, in thyroid cells the folding of thyroglobulin was disrupted. The mRNAs of unfolded protein response were induced or spliced (X-box binding protein-1). Differentiation was inhibited: mRNA levels of thyroid specific genes, and of thyroid transcription factors were dramatically downregulated, at least in part, transcriptionally. The dedifferentiating response was accompanied by an upregulation of mRNAs of antioxidant genes. Moreover, cadherin-1, and the thyroid (and kidney)-specific cadherin-16 mRNAs were downregulated, vimentin, and SNAI1 mRNAs were upregulated. In addition, loss of cortical actin and stress fibers formation were observed. Together, these data indicate that ER stress in thyroid cells induces dedifferentiation, loss of epithelial organization, shift towards a mesenchymal phenotype, and activation of the antioxidant response, highlighting, at the same time, a new and wide strategy to achieve survival following ER stress, and, as a sort of the other side of the coin, a possible new molecular mechanism of decline/loss of function leading to a deficit of thyroid hormones formation.


Assuntos
Antioxidantes/metabolismo , Diferenciação Celular , Estresse do Retículo Endoplasmático , Mesoderma/citologia , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/citologia , Resposta a Proteínas não Dobradas , Animais , Células Cultivadas , Regulação da Expressão Gênica , Mesoderma/metabolismo , Ratos , Células Epiteliais da Tireoide/metabolismo
6.
FEBS J ; 282(23): 4435-49, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26361888

RESUMO

The HECT-type E3 ubiquitin ligase Itch is absent in the non-agouti-lethal 18H or Itchy mice, which develop a severe immunological disease. Several of the known Itch substrates are relevant for epidermal development and homeostasis, such as p63, Notch, c-Jun and JunB. By analysing Itchy mice before the onset of immunological alterations, we investigated the contribution of Itch in skin development and wound healing. Itchy newborn mice manifested hyperplastic epidermis, which is not present in adulthood. Itch(-/-) cultured keratinocytes showed overexpression of proliferating markers and increased capability to proliferate, migrate and to repair a scratch injury in vitro. These data correlated with improved in vivo wound healing in Itchy mice, at late time points of the repair process when Itch is physiologically upregulated. Despite healing acceleration, epidermal remodelling was delayed in the scars of Itch(-/-) mice, as indicated by enhanced epidermal thickening, keratinocyte proliferation and keratin 6 expression, and retarded keratin 14 polarization to the basal layer. Itch(-/-) keratinocyte prolonged activation was not associated with increased immune cell persistence in the scars. Our in vitro and in vivo results indicate that Itch plays a role in epidermal homeostasis and remodelling and this feature does not seem to depend on immunological alterations.


Assuntos
Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Cicatrização , Animais , Proliferação de Células , Células Cultivadas , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout
7.
Proc Natl Acad Sci U S A ; 104(29): 11999-2004, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17626181

RESUMO

p63, a homologue of the tumor suppressor p53, is pivotal for epithelial development, because its loss causes severe epithelial dysgenesis, although no information is so far available on the role of p63 in the thymus. We identified the expression of all p63 isoforms in the developing thymus. The p63(-/-) thymi show severe abnormalities in size and cellularity, even though the organ expresses normal levels of keratins 5 and 8, indicating a p63-independent differentiation of thymic epithelial cells (TEC). TEC were sufficiently developed to allow a significant degree of education to produce CD4/CD8 single- and double-positive T cells. To study the selective contribution of transactivation-active p63 (TAp63) and amino-deleted p63 (DeltaNp63) isoforms to the function of the TEC, we genetically complemented p63(-/-) mice by crossing p63(+/-) mice with transgenic mice expressing either TAp63alpha or DeltaNp63alpha under the control of the keratin 5 promoter. Thymic morphology and cellularity were partially restored by complementation with DeltaNp63, but not TAp63, one downstream effector being fibroblast growth factor receptor 2-IIIb (FgfR2-IIIb). Indeed, FgfR2-IIIb is regulated directly by p63, via its interaction with apobec-1-binding protein-1, and its knockout shows thymic defects similar to those observed in p63(-/-) thymi. In addition, expression of Jag2, a component of the Notch signaling pathway known to be required for thymic development, was enhanced by p63 in vivo genetic complementation. Like Jag2(-/-) thymi, p63(-/-) thymi also show reduced gammadelta cell formation. Therefore, p63, and particularly the DeltaNp63 isoform, is essential for thymic development via enhanced expression of FgfR2 and Jag2. The action of DeltaNp63 is not due to a direct regulation of TEC differentiation, but it is compatible with maintenance of their "stemness," the thymic abnormalities resulting from epithelial failure due to loss of stem cells.


Assuntos
Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Timo/embriologia , Transativadores/metabolismo , Animais , Contagem de Células , Morte Celular , Feto/citologia , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Humanos , Proteína Jagged-2 , Queratinas/metabolismo , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Linfócitos T/citologia , Timo/anormalidades , Timo/patologia , Transativadores/deficiência , Transativadores/genética
8.
Mol Biol Cell ; 18(7): 2735-44, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17507655

RESUMO

Cytotoxic necrotizing factor 1 (CNF1) is a protein toxin produced by some pathogenic strains of Escherichia coli that specifically activates Rho, Rac, and Cdc42 GTPases. We previously reported that this toxin prevents the ultraviolet-B-induced apoptosis in epithelial cells, with a mechanism that remained to be defined. In this work, we show that the proteasomal degradation of the Rho GTPase is necessary to achieve cell death protection, because inhibition of Rho degradation abolishes the prosurvival activity of CNF1. We hypothesize that Rho inactivation allows the activity of Rac to become dominant. This in turn leads to stimulation of the phosphoinositide 3-kinase/Akt/IkappaB kinase/nuclear factor-kappaB prosurvival pathway and to a remarkable modification in the architecture of the mitochondrial network, mainly consisting in the appearance of elongated and interconnected mitochondria. Importantly, we found that Bcl-2 silencing reduces the ability of CNF1 to protect cells against apoptosis and that it also prevents the CNF1-induced mitochondrial changes. It is worth noting that the ability of a bacterial toxin to induce such a remodeling of the mitochondrial network is herein reported for the first time. The possible pathophysiological relevance of this finding is discussed.


Assuntos
Apoptose/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Proteínas de Escherichia coli/farmacologia , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Humanos , Cinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Proteína bcl-X/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
9.
Infect Immun ; 74(7): 3765-72, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16790748

RESUMO

Evidence is accumulating that a growing number of bacterial toxins act by modulating the eukaryotic cell cycle machinery. In this context, we provide evidence that a protein toxin named cytotoxic necrotizing factor 1 (CNF1) from uropathogenic Escherichia coli is able to block cell cycle G(2)/M transition in the uroepithelial cell line T24. CNF1 permanently activates the small GTP-binding proteins of the Rho family that, beside controlling the actin cytoskeleton organization, also play a pivotal role in a large number of other cellular processes, including cell cycle regulation. The results reported here show that CNF1 is able to induce the accumulation of cells in the G(2)/M phase by sequestering cyclin B1 in the cytoplasm and down-regulating its expression. The possible role played by the Rho GTPases in the toxin-induced cell cycle deregulation has been investigated and discussed. The activity of CNF1 on cell cycle progression can offer a novel view of E. coli pathogenicity.


Assuntos
Divisão Celular/fisiologia , Citotoxinas/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Fase G2/fisiologia , Inibidores do Crescimento/fisiologia , Bexiga Urinária/citologia , Bexiga Urinária/microbiologia , Toxinas Bacterianas , Linhagem Celular Tumoral , Ciclina B/metabolismo , Ciclina B1 , Escherichia coli/patogenicidade , Humanos , Urotélio/microbiologia , Proteínas rho de Ligação ao GTP/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA