Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Sci Rep ; 14(1): 1782, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245558

RESUMO

The heart coordinates its functional parameters for optimal beat-to-beat mechanical activity. Reliable detection and quantification of these parameters still represent a hot topic in cardiovascular research. Nowadays, computer vision allows the development of open-source algorithms to measure cellular kinematics. However, the analysis software can vary based on analyzed specimens. In this study, we compared different software performances in in-silico model, in-vitro mouse adult ventricular cardiomyocytes and cardioids. We acquired in-vitro high-resolution videos during suprathreshold stimulation at 0.5-1-2 Hz, adapting the protocol for the cardioids. Moreover, we exposed the samples to inotropic and depolarizing substances. We analyzed in-silico and in-vitro videos by (i) MUSCLEMOTION, the gold standard among open-source software; (ii) CONTRACTIONWAVE, a recently developed tracking software; and (iii) ViKiE, an in-house customized video kinematic evaluation software. We enriched the study with three machine-learning algorithms to test the robustness of the motion-tracking approaches. Our results revealed that all software produced comparable estimations of cardiac mechanical parameters. For instance, in cardioids, beat duration measurements at 0.5 Hz were 1053.58 ms (MUSCLEMOTION), 1043.59 ms (CONTRACTIONWAVE), and 937.11 ms (ViKiE). ViKiE exhibited higher sensitivity in exposed samples due to its localized kinematic analysis, while MUSCLEMOTION and CONTRACTIONWAVE offered temporal correlation, combining global assessment with time-efficient analysis. Finally, machine learning reveals greater accuracy when trained with MUSCLEMOTION dataset in comparison with the other software (accuracy > 83%). In conclusion, our findings provide valuable insights for the accurate selection and integration of software tools into the kinematic analysis pipeline, tailored to the experimental protocol.


Assuntos
Algoritmos , Software , Camundongos , Animais , Fenômenos Biomecânicos , Miócitos Cardíacos/fisiologia , Aprendizado de Máquina
3.
Circ Res ; 133(8): 687-703, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681309

RESUMO

BACKGROUND: Heart failure is typical in the elderly. Metabolic remodeling of cardiomyocytes underlies inexorable deterioration of cardiac function with aging: glycolysis increases at the expense of oxidative phosphorylation, causing an energy deficit contributing to impaired contractility. Better understanding of the mechanisms of this metabolic switching could be critical for reversing the condition. METHODS: To investigate the role of 3 histone modifications (H3K27ac, H3K27me3, and H3K4me1) in the metabolic remodeling occurring in the aging heart, we cross-compared epigenomic, transcriptomic, and metabolomic data from mice of different ages. In addition, the role of the transcriptional coactivator p300 (E1A-associated binding protein p300)/CBP (CREB binding protein) in cardiac aging was investigated using a specific inhibitor of this histone acetyltransferase enzyme. RESULTS: We report a set of species-conserved enhancers associated with transcriptional changes underlying age-related metabolic remodeling in cardiomyocytes. Activation of the enhancer region of Hk2-a key glycolysis pathway gene-was fostered in old age-onset mouse heart by pseudohypoxia, wherein hypoxia-related genes are expressed under normal O2 levels, via increased activity of P300/CBP. Pharmacological inhibition of this transcriptional coactivator before the onset of cardiac aging led to a more aerobic, less glycolytic, metabolic state, improved heart contractility, and overall blunting of cardiac decline. CONCLUSIONS: Taken together, our results suggest how epigenetic dysregulation of glycolysis pathway enhancers could potentially be targeted to treat heart failure in the elderly.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Humanos , Camundongos , Animais , Idoso , Histona Acetiltransferases , Sequências Reguladoras de Ácido Nucleico , Transcriptoma , Ativação Transcricional
4.
Front Cardiovasc Med ; 10: 1216917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408655

RESUMO

Background: Reliable biomarkers for assessing the viability of the donor hearts undergoing ex vivo perfusion remain elusive. A unique feature of normothermic ex vivo perfusion on the TransMedics® Organ Care System (OCS™) is that the donor heart is maintained in a beating state throughout the preservation period. We applied a video algorithm for an in vivo assessment of cardiac kinematics, video kinematic evaluation (Vi.Ki.E.), to the donor hearts undergoing ex vivo perfusion on the OCS™ to assess the feasibility of applying this algorithm in this setting. Methods: Healthy donor porcine hearts (n = 6) were procured from Yucatan pigs and underwent 2 h of normothermic ex vivo perfusion on the OCS™ device. During the preservation period, serial high-resolution videos were captured at 30 frames per second. Using Vi.Ki.E., we assessed the force, energy, contractility, and trajectory parameters of each heart. Results: There were no significant changes in any of the measured parameters of the heart on the OCS™ device over time as judged by linear regression analysis. Importantly, there were no significant changes in contractility during the duration of the preservation period (time 0-30 min, 918 ± 430 px/s; time 31-60 min, 1,386 ± 603 px/s; time 61-90 min, 1,299 ± 617 px/s; time 91-120 min, 1,535 ± 728 px/s). Similarly, there were no significant changes in the force, energy, or trajectory parameters. Post-transplantation echocardiograms demonstrated robust contractility of each allograft. Conclusion: Vi.Ki.E. assessment of the donor hearts undergoing ex vivo perfusion is feasible on the TransMedics OCS™, and we observed that the donor hearts maintain steady kinematic measurements throughout the duration.

5.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047568

RESUMO

The toxicity of nanoparticles absorbed through contact or inhalation is one of the major concerns for public health. It is mandatory to continually evaluate the toxicity of nanomaterials. In vitro nanotoxicological studies are conventionally limited by the two dimensions. Although 3D bioprinting has been recently adopted for three-dimensional culture in the context of drug release and tissue regeneration, little is known regarding its use for nanotoxicology investigation. Therefore, aiming to simulate the exposure of lung cells to nanoparticles, we developed organoid-based scaffolds for long-term studies in immortalized cell lines. We printed the viscous cell-laden material via a customized 3D bioprinter and subsequently exposed the scaffold to either 40 nm latex-fluorescent or 11-14 nm silver nanoparticles. The number of cells significantly increased on the 14th day in the 3D environment, from 5 × 105 to 1.27 × 106, showing a 91% lipid peroxidation reduction over time and minimal cell death observed throughout 21 days. Administered fluorescent nanoparticles can diffuse throughout the 3D-printed scaffolds while this was not the case for the unprinted ones. A significant increment in cell viability from 3D vs. 2D cultures exposed to silver nanoparticles has been demonstrated. This shows toxicology responses that recapitulate in vivo experiments, such as inhaled silver nanoparticles. The results open a new perspective in 3D protocols for nanotoxicology investigation supporting 3Rs.


Assuntos
Bioimpressão , Nanopartículas Metálicas , Alicerces Teciduais , Bioimpressão/métodos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Organoides , Impressão Tridimensional , Engenharia Tecidual/métodos
6.
Biology (Basel) ; 12(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37106734

RESUMO

Obstructive sleep apnea (OSA) can have long-term cardiovascular and metabolic effects. The identification of OSA-related impairments would provide diagnostic and prognostic value. Heart rate variability (HRV) as a measure of cardiac autonomic regulation is a promising candidate marker of OSA and OSA-related conditions. We took advantage of the Physionet Apnea-ECG database for two purposes. First, we performed time- and frequency-domain analysis of nocturnal HRV on each recording of this database to evaluate the cardiac autonomic regulation in patients with nighttime sleep breathing disorders. Second, we conducted a logistic regression analysis (backward stepwise) to identify the HRV indices able to predict the apnea-hypopnea index (AHI) categories (i.e., "Severe OSA", AHI ≥ 30; "Moderate-Mild OSA", 5 ≥ AHI < 30; and "Normal", AHI < 5). Compared to the "Normal", the "Severe OSA" group showed lower high-frequency power in normalized units (HFnu) and higher low-frequency power in normalized units (LFnu). The standard deviation of normal R-R intervals (SDNN) and the root mean square of successive R-R interval differences (RMSSD) were independently associated with sleep-disordered breathing. Our findings suggest altered cardiac autonomic regulation with a reduced parasympathetic component in OSA patients and suggest a role of nighttime HRV in the characterization and identification of sleep breathing disorders.

7.
Pflugers Arch ; 475(6): 731-745, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022463

RESUMO

The effects of excitability, refractoriness, and impulse conduction have been independently related to enhanced arrhythmias in the aged myocardium in experimental and clinical studies. However, their combined arrhythmic effects in the elderly are not yet completely understood. Hence, the aim of the present work is to relate relevant cardiac electrophysiological parameters to enhanced arrhythmia vulnerability in the in vivo senescent heart. We used multiple-lead epicardial potential mapping in control (9-month-old) and aged (24-month-old) rat hearts. Cardiac excitability and refractoriness were evaluated at numerous epicardial test sites by means of the strength-duration curve and effective refractory period, respectively. During sinus rhythm, durations of electrogram intervals and waves were prolonged in the senescent heart, compared with control, demonstrating a latency in tissue activation and recovery. During ventricular pacing, cardiac excitability, effective refractory period, and dispersion of refractoriness increased in the aged animal. This scenario was accompanied by impairment of impulse propagation. Moreover, both spontaneous and induced arrhythmias were increased in senescent cardiac tissue. Histopathological evaluation of aged heart specimens revealed connective tissue deposition and perinuclear myocytolysis in the atria, while scattered microfoci of interstitial fibrosis were mostly present in the ventricular subendocardium. This work suggests that enhanced arrhythmogenesis in the elderly is a multifactorial process due to the joint increase in excitability and dispersion of refractoriness in association with enhanced conduction inhomogeneity. The knowledge of these electrophysiological changes will possibly contribute to improved prevention of the age-associated increase in cardiac arrhythmias.


Assuntos
Arritmias Cardíacas , Sistema de Condução Cardíaco , Masculino , Ratos , Animais , Miocárdio , Ventrículos do Coração , Átrios do Coração
8.
Neurophysiol Clin ; 52(6): 472-481, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36372645

RESUMO

OBJECTIVE: Prolonged neonatal seizures are often due to severe acute brain injuries and are known to be harmful to the brain. No predictors have yet been identified to distinguish at an early time-point between brief and long seizures. We investigated the duration of seizures in neonates to determine the relationship between the duration of a seizure and that of subsequent seizures. METHODS: We retrospectively reviewed video-electroencephalogram confirmed seizures of 30 preterm and 36 full-term neonates selected from patients admitted to the neonatal intensive care unit of Parma University Hospital. The duration and relationship between successive seizures were investigated. Statistical models were performed to evaluate the risk of long-lasting ictal events among neonates with seizures. RESULTS: A positive monotonic relationship between the duration of successive seizures was identified. Most seizures were brief. No significant differences in seizure duration were found between preterm and full-term neonates, although a borderline significance emerged. CONCLUSION: Neonatal seizures are usually brief, and as the seizure duration increases, the duration of the subsequent seizures tends to increase. We also suggest that full-term neonates could be at higher risk of experiencing long seizures compared to preterm neonates. In summary, estimating the seizure duration is critical to evaluating the optimal timing of therapeutic interventions and can help to predict how seizures evolve.


Assuntos
Epilepsia , Estado Epiléptico , Recém-Nascido , Humanos , Estudos Retrospectivos , Convulsões/terapia , Eletroencefalografia
9.
Environ Res ; 212(Pt A): 113216, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35364045

RESUMO

BACKGROUND: Maternal exposure to air pollutants has been associated with pregnancy complications and adverse birth outcomes. Endothelial dysfunction, an imbalance in vascular function, during pregnancy is considered a key element in the development of pre-eclampsia. Environmental exposure to particulate matter (PM) during the first trimester of pregnancy might increase maternal inflammatory status thus affecting fetal growth, possibly leading to preterm delivery. OBJECTIVES: The purpose of the study was to evaluate possible effects of PM10 and PM2.5 exposure on fetal growth in healthy pregnant women at the end of the first trimester of pregnancy by investigating the relationship between circulating biomarkers of inflammation (IL-6), early systemic prothrombotic effects (CRP, plasma fibrinogen, PAI-1) and endothelial dysfunction (sICAM-1 and sVCAM-1). METHODS: 295 pregnant women were recruited. Individual PM exposure was assigned to each subject by calculating the mean of PM10 and PM2.5 daily values observed during the 30, 60, and 90 days preceding enrolment (long-term) and single lag days back to fourteen days (short-term), and circulating plasma biomarkers were determined. RESULTS: For long-term exposure, we observed an increase in sVCAM-1 and a decrease of PAI-1 levels for each 10 µg/m3 increase in PM10 concentration. Decreases in IL-6 and CRP levels were associated with each 10 µg/m3 PM2.5 increase. For short-term exposure, the levels of sVCAM-1 and PAI-1 were found to be associated with PM10 exposure, whereas fibrinogen levels were associated with PM2.5 exposure. Maternal plasmatic fibrinogen levels were negatively associated with the crown-rump length (p-value = 0.008). DISCUSSION: The present study showed that both long- and short-term exposures to PM are associated with changes in circulating levels of biomarkers in pregnant women reflecting systemic inflammation and endothelial dysfunction/activation. Our findings support the hypothesis that inflammation and endothelial dysfunction might have a central role in modulating the detrimental effects of air pollution exposure during pregnancy.


Assuntos
Poluição do Ar , Exposição Materna , Complicações na Gravidez , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Biomarcadores , Exposição Ambiental/análise , Feminino , Fibrinogênio , Humanos , Inflamação/induzido quimicamente , Interleucina-6/sangue , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Inibidor 1 de Ativador de Plasminogênio/sangue , Gravidez , Complicações na Gravidez/induzido quimicamente , Primeiro Trimestre da Gravidez
10.
Biomedicines ; 10(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327442

RESUMO

Intracellular calcium (Ca2+) is the central regulator of heart contractility. Indeed, it couples the electrical signal, which pervades the myocardium, with cardiomyocytes contraction. Moreover, alterations in calcium management are the main factors contributing to the mechanical and electrical dysfunction observed in failing hearts. So, simultaneous analysis of the contractile function and intracellular Ca2+ is indispensable to evaluate cardiomyocytes activity. Intracellular Ca2+ variations and fraction shortening are commonly studied with fluorescent Ca2+ indicator dyes associated with microscopy techniques. However, tracking and dealing with multiple files manually is time-consuming and error-prone and often requires expensive apparatus and software. Here, we announce a new, user-friendly image processing and analysis tool, based on ImageJ-Fiji/MATLAB® software, to evaluate the major cardiomyocyte functional parameters. We succeeded in analyzing fractional cell shortening, Ca2+ transient amplitude, and the kinematics/dynamics parameters of mouse isolated adult cardiomyocytes. The proposed method can be applied to evaluate changes in the Ca2+ cycle and contractile behavior in genetically or pharmacologically induced disease models, in drug screening and other common applications to assess mammalian cardiomyocyte functions.

11.
Nat Commun ; 13(1): 6, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013167

RESUMO

Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos/fisiologia , Nanofios , Arritmias Cardíacas/terapia , Compostos Inorgânicos de Carbono , Ventrículos do Coração , Humanos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Compostos de Silício
13.
J Clin Med ; 10(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830612

RESUMO

The human right ventricle is barely monitored during open-chest surgery due to the absence of intraoperative imaging techniques capable of elaborating its complex function. Accordingly, artificial intelligence could not be adopted for this specific task. We recently proposed a video-based approach for the real-time evaluation of the epicardial kinematics to support medical decisions. Here, we employed two supervised machine learning algorithms based on our technique to predict the patients' outcomes before chest closure. Videos of the beating hearts were acquired before and after pulmonary valve replacement in twelve Tetralogy of Fallot patients and recordings were properly labeled as the "unhealthy" and "healthy" classes. We extracted frequency-domain-related features to train different supervised machine learning models and selected their best characteristics via 10-fold cross-validation and optimization processes. Decision surfaces were built to classify two additional patients having good and unfavorable clinical outcomes. The k-nearest neighbors and support vector machine showed the highest prediction accuracy; the patients' class was identified with a true positive rate ≥95% and the decision surfaces correctly classified the additional patients in the "healthy" (good outcome) or "unhealthy" (unfavorable outcome) classes. We demonstrated that classifiers employed with our video-based technique may aid cardiac surgeons in decision making before chest closure.

14.
Neurophysiol Clin ; 51(6): 483-492, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34774410

RESUMO

Many factors acting during the neonatal period can affect neurological development of the infant. Neonatal seizures (NS) that frequently occur in the immature brain may influence autonomic maturation and lead to detectable cardiovascular signs. These autonomic manifestations can also have significant diagnostic and prognostic value. The analysis of Heart Rate Variability (HRV) represents the most used and feasible method to evaluate cardiac autonomic regulation. This narrative review summarizes studies investigating HRV dynamics in newborns with seizures, with the aim of highlighting the potential utility of HRV measures for seizure detection and management. While HRV analysis in critically ill newborns is influenced by many potential confounders, we suggest that it can enhance the ability to better diagnose seizures in the clinical setting. We present potential applications of the analysis of HRV, which could have a useful future role, beyond the research setting.


Assuntos
Sistema Nervoso Autônomo , Epilepsia , Encéfalo , Frequência Cardíaca , Humanos , Recém-Nascido , Convulsões/diagnóstico , Convulsões/terapia
15.
Eur Heart J ; 42(28): 2780-2792, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34104945

RESUMO

AIMS: Increased shedding of extracellular vesicles (EVs)-small, lipid bilayer-delimited particles with a role in paracrine signalling-has been associated with human pathologies, e.g. atherosclerosis, but whether this is true for cardiac diseases is unknown. METHODS AND RESULTS: Here, we used the surface antigen CD172a as a specific marker of cardiomyocyte (CM)-derived EVs; the CM origin of CD172a+ EVs was supported by their content of cardiac-specific proteins and heart-enriched microRNAs. We found that patients with aortic stenosis, ischaemic heart disease, or cardiomyopathy had higher circulating CD172a+ cardiac EV counts than did healthy subjects. Cellular stress was a major determinant of EV release from CMs, with hypoxia increasing shedding in in vitro and in vivo experiments. At the functional level, EVs isolated from the supernatant of CMs derived from human-induced pluripotent stem cells and cultured in a hypoxic atmosphere elicited a positive inotropic response in unstressed CMs, an effect we found to be dependent on an increase in the number of EVs expressing ceramide on their surface. Of potential clinical relevance, aortic stenosis patients with the highest counts of circulating cardiac CD172a+ EVs had a more favourable prognosis for transcatheter aortic valve replacement than those with lower counts. CONCLUSION: We identified circulating CD172a+ EVs as cardiac derived, showing their release and function and providing evidence for their prognostic potential in aortic stenosis patients.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Humanos , Hipóxia , Miocárdio , Miócitos Cardíacos
16.
Environ Pollut ; 284: 117163, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33910133

RESUMO

Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nanopartículas , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Animais , Arritmias Cardíacas/induzido quimicamente , Nanopartículas/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Ratos , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
17.
Polymers (Basel) ; 13(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670792

RESUMO

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.

18.
Sci Rep ; 11(1): 4840, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649357

RESUMO

Right ventricle (RV) dysfunction is an independent predictor of patient survival in heart failure (HF). However, the mechanisms of RV progression towards failing are not well understood. We studied cellular mechanisms of RV remodelling in a rat model of left ventricle myocardial infarction (MI)-caused HF. RV myocytes from HF rats show significant cellular hypertrophy accompanied with a disruption of transverse-axial tubular network and surface flattening. Functionally these cells exhibit higher contractility with lower Ca2+ transients. The structural changes in HF RV myocytes correlate with more frequent spontaneous Ca2+ release activity than in control RV myocytes. This is accompanied by hyperactivated L-type Ca2+ channels (LTCCs) located specifically in the T-tubules of HF RV myocytes. The increased open probability of tubular LTCCs and Ca2+ sparks activation is linked to protein kinase A-mediated channel phosphorylation that occurs locally in T-tubules. Thus, our approach revealed that alterations in RV myocytes in heart failure are specifically localized in microdomains. Our findings may indicate the development of compensatory, though potentially arrhythmogenic, RV remodelling in the setting of LV failure. These data will foster better understanding of mechanisms of heart failure and it could promote an optimized treatment of patients.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Insuficiência Cardíaca , Ventrículos do Coração , Miócitos Cardíacos , Disfunção Ventricular Direita , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
19.
Pharmacol Res ; 168: 105581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781873

RESUMO

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Assuntos
Encefalopatias/terapia , Encéfalo/efeitos dos fármacos , COVID-19/terapia , Cardiopatias/terapia , Coração/efeitos dos fármacos , Corticosteroides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antivirais/administração & dosagem , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalopatias/imunologia , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Cuidados Críticos/métodos , Estado Terminal/terapia , Suplementos Nutricionais , Alimento Funcional , Cardiopatias/imunologia , Cardiopatias/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Microvasos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/terapia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
20.
Eur J Cardiothorac Surg ; 59(6): 1329-1336, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33547473

RESUMO

OBJECTIVES: Indications for and timing of pulmonary valve replacement (PVR) after tetralogy of Fallot repair are controversial. Among magnetic resonance imaging indices proposed to time valve replacement, a right ventricular (RV) end-diastolic volume index greater than 160 ml/m2 is often used. Recent evidence suggests that this value may still identify patients with irreversible RV dysfunction, thus hindering recovery. Our goal was to define, using intraoperative video kinematic evaluation, whether a relationship exists between timing of PVR and early functional recovery after surgery. METHODS: Between November 2016 and November 2018, a total of 12 consecutive patients aged 27.1 ± 19.1 years underwent PVR on average 22.2 ± 13.3 years after tetralogy of Fallot repair. Mean RV end-diastolic volume evident on the magnetic resonance images was 136.9 ± 35.7 ml/m2. Intraoperative cardiac kinematics were assessed by video kinematic evaluation via a high-speed camera acquiring videos at 200 fps before and after valve replacement. RESULTS: Patients presenting with RV end-diastolic volume <147 ml/m2 were significantly younger (11.2 ± 5.0 vs 38.4 ± 17.0; P = 0.005) and had a shorter time interval to valve replacement (11.0 ± 5.2 vs 30.1 ± 11.3; P = 0.03). The entire population showed a moderate correlation among energy expenditure, cardiac fatigue, perimeter of contraction and preoperative RV end-diastolic volume index. Both groups showed a reduction in all kinematic parameters after PVR, but those with end-diastolic volume >147 ml/m2 showed an unpredictable outcome. CONCLUSIONS: Video kinematic evaluation provides insight into intraoperative RV recovery in patients with tetralogy of Fallot undergoing PVR. Accordingly, functional recovery can be expected in patients with preoperative end-diastolic volume <147 ml/m2.


Assuntos
Insuficiência da Valva Pulmonar , Valva Pulmonar , Tetralogia de Fallot , Fenômenos Biomecânicos , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...