Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6829, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884516

RESUMO

In most of the world, conditions conducive to wildfires are becoming more prevalent. Net carbon emissions from wildfires contribute to a positive climate feedback that needs to be monitored, quantified, and predicted. Here we use a causal inference approach to evaluate the influence of top-down weather and bottom-up fuel precursors on wildfires. The top-down dominance on wildfires is more widespread than bottom-up dominance, accounting for 73.3% and 26.7% of regions, respectively. The top-down precursors dominate in the tropical rainforests, mid-latitudes, and eastern Siberian boreal forests. The bottom-up precursors dominate in North American and European boreal forests, and African and Australian savannahs. Our study identifies areas where wildfires are governed by fuel conditions and hence where fuel management practices may be more effective. Moreover, our study also highlights that top-down and bottom-up precursors show complementary wildfire predictability across timescales. Seasonal or interannual predictions are feasible in regions where bottom-up precursors dominate.

2.
Sci Data ; 10(1): 724, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872197

RESUMO

We introduce Version 2 of our widely used 1-km Köppen-Geiger climate classification maps for historical and future climate conditions. The historical maps (encompassing 1901-1930, 1931-1960, 1961-1990, and 1991-2020) are based on high-resolution, observation-based climatologies, while the future maps (encompassing 2041-2070 and 2071-2099) are based on downscaled and bias-corrected climate projections for seven shared socio-economic pathways (SSPs). We evaluated 67 climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) and kept a subset of 42 with the most plausible CO2-induced warming rates. We estimate that from 1901-1930 to 1991-2020, approximately 5% of the global land surface (excluding Antarctica) transitioned to a different major Köppen-Geiger class. Furthermore, we project that from 1991-2020 to 2071-2099, 5% of the land surface will transition to a different major class under the low-emissions SSP1-2.6 scenario, 8% under the middle-of-the-road SSP2-4.5 scenario, and 13% under the high-emissions SSP5-8.5 scenario. The Köppen-Geiger maps, along with associated confidence estimates, underlying monthly air temperature and precipitation data, and sensitivity metrics for the CMIP6 models, can be accessed at www.gloh2o.org/koppen .

3.
NPJ Clim Atmos Sci ; 6(1): 51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665267

RESUMO

Global crop yields are highly dependent on climate variability, with the largest agricultural failures frequently occurring during extremely dry and hot years. Land-atmosphere feedbacks are thought to play a crucial role in agricultural productivity during such events: precipitation deficits cause soil desiccation, which reduces evaporation and enhances sensible heating from the land surface; the amplified local temperatures and moisture deficits can be detrimental to crop yield. While this impact of local land-atmosphere feedbacks on agricultural productivity has recently been reported, the dependency of crop yields on upwind regions remains understudied. Here, we determine the spatio-temporal origins of moisture and heat over the world's largest 75 rainfed breadbaskets, and illustrate the crop yield dependency on upwind regions. Further, we disentangle the role of local and upwind land-atmosphere interactions on anomalous moisture and heat transport during low-yield years. Our results indicate that crop failure increases on average by around 40% when both upwind and local land-atmosphere feedbacks cause anomalously low moisture and high heat transport into the breadbaskets. The impact of upwind land-atmosphere feedbacks on productivity deficits is the largest in water-limited regions, which show an increased dependency on moisture supply from upwind land areas. Better understanding these upwind-downwind dependencies in agricultural regions can help develop adaptation strategies to prevent food shortage in a changing climate.

4.
Geophys Res Lett ; 49(18): e2022GL100100, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36583013

RESUMO

Transpiration makes up the bulk of total evaporation in forested environments yet remains challenging to predict at landscape-to-global scales. We harnessed independent estimates of daily transpiration derived from co-located sap flow and eddy-covariance measurement systems and applied the triple collocation technique to evaluate predictions from big leaf models requiring no calibration. In total, four models in 608 unique configurations were evaluated at 21 forested sites spanning a wide diversity of biophysical attributes and environmental backgrounds. We found that simpler models that neither explicitly represented aerodynamic forcing nor canopy conductance achieved higher accuracy and signal-to-noise levels when optimally configured (rRMSE = 20%; R 2 = 0.89). Irrespective of model type, optimal configurations were those making use of key plant functional type dependent parameters, daily LAI, and constraints based on atmospheric moisture demand over soil moisture supply. Our findings have implications for more informed water resource management based on hydrological modeling and remote sensing.

5.
Front Big Data ; 5: 967477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156935

RESUMO

Local studies and modeling experiments suggest that shallow groundwater and lateral redistribution of soil moisture, together with soil properties, can be highly important secondary water sources for vegetation in water-limited ecosystems. However, there is a lack of observation-based studies of these terrain-associated secondary water effects on vegetation over large spatial domains. Here, we quantify the role of terrain properties on the spatial variations of dry season vegetation decay rate across Africa obtained from geostationary satellite acquisitions to assess the large-scale relevance of secondary water effects. We use machine learning based attribution to identify where and under which conditions terrain properties related to topography, water table depth, and soil hydraulic properties influence the rate of vegetation decay. Over the study domain, the machine learning model attributes about one-third of the spatial variations of vegetation decay rates to terrain properties, which is roughly equally split between direct terrain effects and interaction effects with climate and vegetation variables. The importance of secondary water effects increases with increasing topographic variability, shallower groundwater levels, and the propensity to capillary rise given by soil properties. In regions with favorable terrain properties, more than 60% of the variations in the decay rate of vegetation are attributed to terrain properties, highlighting the importance of secondary water effects on vegetation in Africa. Our findings provide an empirical assessment of the importance of local-scale secondary water effects on vegetation over Africa and help to improve hydrological and vegetation models for the challenge of bridging processes across spatial scales.

6.
J Adv Model Earth Syst ; 14(3): e2021MS002730, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865621

RESUMO

Hydrological interactions between vegetation, soil, and topography are complex, and heterogeneous in semi-arid landscapes. This along with data scarcity poses challenges for large-scale modeling of vegetation-water interactions. Here, we exploit metrics derived from daily Meteosat data over Africa at ca. 5 km spatial resolution for ecohydrological analysis. Their spatial patterns are based on Fractional Vegetation Cover (FVC) time series and emphasize limiting conditions of the seasonal wet to dry transition: the minimum and maximum FVC of temporal record, the FVC decay rate and the FVC integral over the decay period. We investigate the relevance of these metrics for large scale ecohydrological studies by assessing their co-variation with soil moisture, and with topographic, soil, and vegetation factors. Consistent with our initial hypothesis, FVC minimum and maximum increase with soil moisture, while the FVC integral and decay rate peak at intermediate soil moisture. We find evidence for the relevance of topographic moisture variations in arid regions, which, counter-intuitively, is detectable in the maximum but not in the minimum FVC. We find no clear evidence for wide-spread occurrence of the "inverse texture effect" on FVC. The FVC integral over the decay period correlates with independent data sets of plant water storage capacity or rooting depth while correlations increase with aridity. In arid regions, the FVC decay rate decreases with canopy height and tree cover fraction as expected for ecosystems with a more conservative water-use strategy. Thus, our observation-based products have large potential for better understanding complex vegetation-water interactions from regional to continental scales.

7.
Nat Commun ; 13(1): 1912, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395845

RESUMO

Terrestrial evaporation (E) is a key climatic variable that is controlled by a plethora of environmental factors. The constraints that modulate the evaporation from plant leaves (or transpiration, Et) are particularly complex, yet are often assumed to interact linearly in global models due to our limited knowledge based on local studies. Here, we train deep learning algorithms using eddy covariance and sap flow data together with satellite observations, aiming to model transpiration stress (St), i.e., the reduction of Et from its theoretical maximum. Then, we embed the new St formulation within a process-based model of E to yield a global hybrid E model. In this hybrid model, the St formulation is bidirectionally coupled to the host model at daily timescales. Comparisons against in situ data and satellite-based proxies demonstrate an enhanced ability to estimate St and E globally. The proposed framework may be extended to improve the estimation of E in Earth System Models and enhance our understanding of this crucial climatic variable.


Assuntos
Aprendizado Profundo , Transpiração Vegetal , Ecossistema , Folhas de Planta , Água
8.
Nat Geosci ; 15(4): 262-268, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35422877

RESUMO

Reduced evaporation due to dry soils can affect the land surface energy balance, with implications for local and downwind precipitation. When evaporation is constrained by soil moisture, the atmospheric supply of water is depleted, and this deficit may propagate in time and space. This mechanism could theoretically result in the self-propagation of droughts, but the extent to which this process occurs is unknown. Here we isolate the influence of soil moisture drought on downwind precipitation using Lagrangian moisture tracking constrained by observations from the 40 largest recent droughts worldwide. We show that dryland droughts are particularly prone to self-propagating, because evaporation tends to respond strongly to enhanced soil water stress. In drylands precipitation can decline by more than 15% due to upwind drought in during a single event, and up to 30% during individual months. In light of projected widespread reductions in water availability, this feedback may further exacerbate future droughts.

9.
Sci Adv ; 8(1): eabe6653, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995108

RESUMO

Global warming increases the number and severity of deadly heatwaves. Recent heatwaves often coincided with soil droughts that intensify air temperature but lower air humidity. Since lowering air humidity may reduce human heat stress, the net impact of soil desiccation on the morbidity and mortality of heatwaves remains unclear. Combining weather balloon and satellite observations, atmospheric modelling, and meta-analyses of heatwave mortality, we find that soil droughts­despite their warming effect­lead to a mild reduction in heatwave lethality. More specifically, morning dry soils attenuate afternoon heat stress anomaly by ~5%. This occurs because of reduced surface evaporation and increased entrainment of dry air aloft. The benefit appears more pronounced during specific events, such as the Chicago 1995 and Northern U.S. 2006 and 2012 heatwaves. Our findings suggest that irrigated agriculture may intensify lethal heat stress, and question recently proposed heatwave mitigation measures involving surface moistening to increase evaporative cooling.

10.
Sci Data ; 8(1): 224, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429438

RESUMO

Challenges exist for assessing the impacts of climate and climate change on the hydrological cycle on local and regional scales, and in turn on water resources, food, energy, and natural hazards. Potential evapotranspiration (PET) represents atmospheric demand for water, which is required at high spatial and temporal resolutions to compute actual evapotranspiration and thus close the water balance near the land surface for many such applications, but there are currently no available high-resolution datasets of PET. Here we develop an hourly PET dataset (hPET) for the global land surface at 0.1° spatial resolution, based on output from the recently developed ERA5-Land reanalysis dataset, over the period 1981 to present. We show how hPET compares to other available global PET datasets, over common spatiotemporal resolutions and time frames, with respect to spatial patterns of climatology and seasonal variations for selected humid and arid locations across the globe. We provide the data for users to employ for multiple applications to explore diurnal and seasonal variations in evaporative demand for water.

11.
Water Resour Res ; 57(5): e2020WR028658, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34219820

RESUMO

Earth observations offer potential pathways for accurately closing the water and energy balance of watersheds, a fundamental challenge in hydrology. However, previous attempts based on purely satellite-based estimates have focused on closing the water and energy balances separately. They are hindered by the lack of estimates of key components, such as runoff. Here, we posit a novel approach based on Budyko's water and energy balance constraints. The approach is applied to quantify the degree of long-term closure at the watershed scale, as well as its associated uncertainties, using an ensemble of global satellite data sets. We find large spatial variability across aridity, elevation, and other environmental gradients. Specifically, we find a positive correlation between elevation and closure uncertainty, as derived from the Budyko approach. In mountainous watersheds the uncertainty in closure is 3.9 ± 0.7 (dimensionless). Our results show that uncertainties in terrestrial evaporation contribute twice as much as precipitation uncertainties to errors in the closure of water and energy balance. Moreover, our results highlight the need for improving satellite-based precipitation and evaporation data in humid temperate forests, where the closure error in the Budyko space is as high as 1.1 ± 0.3, compared to only 0.2 ± 0.03 in tropical forests. Comparing the results with land surface model-based data sets driven by in situ precipitation, we find that Earth observation-based data sets perform better in regions where precipitation gauges are sparse. These findings have implications for improving the understanding of global hydrology and regional water management and can guide the development of satellite remote sensing-based data sets and Earth system models.

12.
Glob Chang Biol ; 27(14): 3336-3349, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33910268

RESUMO

The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants-that is, increased photosynthetic uptake of CO2 by leaves and enhanced water-use efficiency (WUE). Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture (SM) savings at large scale is poorly understood. Drylands provide a natural experimental setting to detect the CO2 fertilization effect on plant growth since foliage amount, plant water-use and photosynthesis are all tightly coupled in water-limited ecosystems. A long-term change in the response of leaf area index (LAI, a measure of foliage amount) to changes in SM is likely to stem from changing water demand of primary productivity in water-limited ecosystems and is a proxy for changes in WUE. Using 34-year satellite observations of LAI and SM over tropical and subtropical drylands, we identify that a 1% increment in SM leads to 0.15% (±0.008, 95% confidence interval) and 0.51% (±0.01, 95% confidence interval) increments in LAI during 1982-1998 and 1999-2015, respectively. The increasing response of LAI to SM has contributed 7.2% (±3.0%, 95% confidence interval) to total dryland greening during 1999-2015 compared to 1982-1998. The increasing response of LAI to SM is consistent with the CO2 fertilization effect on WUE in water-limited ecosystems, indicating that a given amount of SM has sustained greater amounts of photosynthetic foliage over time. The LAI responses to changes in SM from seven dynamic global vegetation models are not always consistent with observations, highlighting the need for improved process knowledge of terrestrial ecosystem responses to rising atmospheric CO2 concentration.


Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/análise , Fertilização , Fotossíntese , Solo
13.
J Geophys Res Atmos ; 126(15): e2020JD034163, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35866004

RESUMO

In this study, we show that limitations in the representation of land cover and vegetation seasonality in the European Centre for Medium-Range Weather Forecasting (ECMWF) model are partially responsible for large biases (up to ∼10°C, either positive or negative depending on the region) on the simulated daily maximum land surface temperature (LST) with respect to satellite Earth Observations (EOs) products from the Land Surface Analysis Satellite Application Facility. The error patterns were coherent in offline land-surface and coupled land-atmosphere simulations, and in ECMWF's latest generation reanalysis (ERA5). Subsequently, we updated the ECMWF model's land cover characterization leveraging on state-of-the-art EOs-the European Space Agency Climate Change Initiative land cover data set and the Copernicus Global Land Services leaf area index. Additionally, we tested a clumping parameterization, introducing seasonality to the effective low vegetation coverage. The updates reduced the overall daily maximum LST bias and unbiased root-mean-squared errors. In contrast, the implemented updates had a neutral impact on daily minimum LST. Our results also highlighted the complex regional heterogeneities in the atmospheric sensitivity to land cover and vegetation changes, particularly with issues emerging over eastern Brazil and northeastern Asia. These issues called for a re-calibration of model parameters (e.g., minimum stomatal resistance, roughness length, rooting depth), along with a revision of several model assumptions (e.g., snow shading by high vegetation).

14.
Ann N Y Acad Sci ; 1472(1): 123-138, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32383259

RESUMO

The land biosphere is a crucial component of the Earth system that interacts with the atmosphere in a complex manner through manifold feedback processes. These relationships are bidirectional, as climate affects our terrestrial ecosystems, which, in turn, influence climate. Great progress has been made in understanding the local interactions between the terrestrial biosphere and climate, but influences from remote regions through energy and water influxes to downwind ecosystems remain less explored. Using a Lagrangian trajectory model driven by atmospheric reanalysis data, we show how heat and moisture advection affect gross carbon production at interannual scales and in different ecoregions across the globe. For water-limited regions, results show a detrimental effect on ecosystem productivity during periods of enhanced heat and reduced moisture advection. These periods are typically associated with winds that disproportionately come from continental source regions, as well as positive sensible heat flux and negative latent heat flux anomalies in those upwind locations. Our results underline the vulnerability of ecosystems to the occurrence of upwind climatic extremes and highlight the importance of the latter for the spatiotemporal propagation of ecosystem disturbances.


Assuntos
Atmosfera , Mudança Climática , Ecossistema , Modelos Teóricos , Estações do Ano , Água
15.
Ann N Y Acad Sci ; 1436(1): 19-35, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29943456

RESUMO

Droughts and heatwaves cause agricultural loss, forest mortality, and drinking water scarcity, especially when they occur simultaneously as combined events. Their predicted increase in recurrence and intensity poses serious threats to future food security. Still today, the knowledge of how droughts and heatwaves start and evolve remains limited, and so does our understanding of how climate change may affect them. Droughts and heatwaves have been suggested to intensify and propagate via land-atmosphere feedbacks. However, a global capacity to observe these processes is still lacking, and climate and forecast models are immature when it comes to representing the influences of land on temperature and rainfall. Key open questions remain in our goal to uncover the real importance of these feedbacks: What is the impact of the extreme meteorological conditions on ecosystem evaporation? How do these anomalies regulate the atmospheric boundary layer state (event self-intensification) and contribute to the inflow of heat and moisture to other regions (event self-propagation)? Can this knowledge on the role of land feedbacks, when available, be exploited to develop geo-engineering mitigation strategies that prevent these events from aggravating during their early stages? The goal of our perspective is not to present a convincing answer to these questions, but to assess the scientific progress to date, while highlighting new and innovative avenues to keep advancing our understanding in the future.


Assuntos
Mudança Climática , Secas , Ecossistema , Temperatura Alta , Modelos Teóricos , Agricultura , Humanos
16.
Science ; 360(6394)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29903941

RESUMO

Li et al contest the idea that vegetation greening has contributed to boreal warming and argue that the sensitivity of temperature to leaf area index (LAI) is instead likely driven by the climate impact on vegetation. We provide additional evidence that the LAI-climate interplay is indeed largely driven by the vegetation impact on temperature and not vice versa, thus corroborating our original conclusions.


Assuntos
Clima , Planeta Terra , Mudança Climática , Ecossistema , Folhas de Planta , Temperatura
17.
Nat Ecol Evol ; 1(12): 1883-1888, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29133901

RESUMO

Biome function is largely governed by how efficiently available resources can be used and yet for water, the ratio of direct biological resource use (transpiration, E T) to total supply (annual precipitation, P) at ecosystem scales remains poorly characterized. Here, we synthesize field, remote sensing and ecohydrological modelling estimates to show that the biological water use fraction (E T/P) reaches a maximum under mesic conditions; that is, when evaporative demand (potential evapotranspiration, E P) slightly exceeds supplied precipitation. We estimate that this mesic maximum in E T/P occurs at an aridity index (defined as E P/P) between 1.3 and 1.9. The observed global average aridity of 1.8 falls within this range, suggesting that the biosphere is, on average, configured to transpire the largest possible fraction of global precipitation for the current climate. A unimodal E T/P distribution indicates that both dry regions subjected to increasing aridity and humid regions subjected to decreasing aridity will suffer declines in the fraction of precipitation that plants transpire for growth and metabolism. Given the uncertainties in the prediction of future biogeography, this framework provides a clear and concise determination of ecosystems' sensitivity to climatic shifts, as well as expected patterns in the amount of precipitation that ecosystems can effectively use.


Assuntos
Mudança Climática , Ecossistema , Água/metabolismo , Clima Desértico , Plantas/metabolismo
18.
Nat Commun ; 8(1): 110, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740122

RESUMO

Quantifying the responses of the coupled carbon and water cycles to current global warming and rising atmospheric CO2 concentration is crucial for predicting and adapting to climate changes. Here we show that terrestrial carbon uptake (i.e. gross primary production) increased significantly from 1982 to 2011 using a combination of ground-based and remotely sensed land and atmospheric observations. Importantly, we find that the terrestrial carbon uptake increase is not accompanied by a proportional increase in water use (i.e. evapotranspiration) but is largely (about 90%) driven by increased carbon uptake per unit of water use, i.e. water use efficiency. The increased water use efficiency is positively related to rising CO2 concentration and increased canopy leaf area index, and negatively influenced by increased vapour pressure deficits. Our findings suggest that rising atmospheric CO2 concentration has caused a shift in terrestrial water economics of carbon uptake.The response of the coupled carbon and water cycles to anthropogenic climate change is unclear. Here, the authors show that terrestrial carbon uptake increased significantly from 1982 to 2011 and that this increase is largely driven by increased water-use efficiency, rather than an increase in water use.

19.
Science ; 356(6343): 1180-1184, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28546316

RESUMO

Changes in vegetation cover associated with the observed greening may affect several biophysical processes, whose net effects on climate are unclear. We analyzed remotely sensed dynamics in leaf area index (LAI) and energy fluxes in order to explore the associated variation in local climate. We show that the increasing trend in LAI contributed to the warming of boreal zones through a reduction of surface albedo and to an evaporation-driven cooling in arid regions. The interplay between LAI and surface biophysics is amplified up to five times under extreme warm-dry and cold-wet years. Altogether, these signals reveal that the recent dynamics in global vegetation have had relevant biophysical impacts on the local climates and should be considered in the design of local mitigation and adaptation plans.


Assuntos
Clima , Modelos Teóricos , Fenômenos Fisiológicos Vegetais , Imagens de Satélites , Fenômenos Biofísicos , Mudança Climática , Densidade Demográfica , Luz Solar , Temperatura , Fatores de Tempo
20.
Nat Commun ; 8: 14065, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074840

RESUMO

Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...