Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 166(1): 103-116.e9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37716376

RESUMO

BACKGROUND & AIMS: CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS: In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS: Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-ß-catenin pathways. CONCLUSIONS: These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.


Assuntos
Colite , Neoplasias do Colo , Animais , Humanos , Camundongos , Proliferação de Células , Colite/induzido quimicamente , Colite/metabolismo , Neoplasias do Colo/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Células Epiteliais/patologia , Mucosa Intestinal/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Inflamm Bowel Dis ; 29(7): 1133-1144, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36688460

RESUMO

BACKGROUND: Incidences of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are escalating worldwide and can be considered a global public health problem. Given that the gold standard approach to IBD therapeutics focuses on reducing the severity of symptoms, there is an urgent unmet need to develop alternative therapies that halt not only inflammatory processes but also promote mucosal repair. Previous studies have identified increased stem cell factor (SCF) expression in inflamed intestinal mucosal tissues. However, the role that SCF plays in mediating intestinal inflammation and repair has not been explored. METHODS: Changes in the expression of SCF were evaluated in the colonic tissue of healthy mice and during dextran sodium sulfate (DSS)-induced colitis. Furthermore, mucosal wound healing and colitis severity were analyzed in mice subjected to either mechanical biopsy or DSS treatment, respectively, following intestinal epithelial cell-specific deletion of SCF or anti-SCF antibody administration. RESULTS: We report robust expression of SCF by intestinal epithelial cells during intestinal homeostasis with a switch to immune cell-produced SCF during colitis. Data from mice with intestinal epithelial cell-specific deletion of SCF highlight the importance of immune cell-produced SCF in driving the pathogenesis of colitis. Importantly, antibody-mediated neutralization of total SCF or the specific SCF248 isoform decreased immune cell infiltration and enhanced mucosal wound repair following biopsy-induced colonic injury or DSS-induced colitis. CONCLUSIONS: These data demonstrate that SCF functions as a pro-inflammatory mediator in mucosal tissues and that specific neutralization of SCF248 could be a viable therapeutic option to reduce intestinal inflammation and promote mucosal wound repair in individuals with IBD.


Our investigation demonstrates that blocking cleavable SCF248 isoform by administration of specific stem cell factor antibodies enhances healing of the intestinal mucosa and restores critical barrier function, suggesting an alternative therapeutic option to treat individuals with active IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Fator de Células-Tronco/antagonistas & inibidores , Fator de Células-Tronco/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(4): e2218162120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669099

RESUMO

Resolution of inflammation and mucosal wound healing are crucial processes required to re-establish homeostasis following injury of mucosal tissues. Maresin-2 (MaR2), a lipid specialized pro-resolving mediator derived from omega-3 polyunsaturated fatty acid, has been reported to promote resolution of inflammation. However, a potential role for MaR2 in regulating mucosal repair remains undefined. Using lipidomic analyses, we demonstrate biosynthesis of MaR2 in healing intestinal mucosal wounds in vivo. Importantly, administration of exogenous MaR2 promoted mucosal repair following dextran sulfate sodium-induced colitis or biopsy-induced colonic mucosal injury. Functional analyses revealed that MaR2 promotes mucosal wound repair by driving intestinal epithelial migration through activation of focal cell-matrix adhesion signaling in primary human intestinal epithelial cells. Because of its labile nature, MaR2 is easily degradable and requires ultracold storage to maintain functionality. Thus, we created thermostable polylactic acid MaR2 nanoparticles that retain biological activity following extended storage at 4 °C or above. Taken together, these results establish MaR2 as a potent pro-repair lipid mediator with broad therapeutic potential for use in promoting mucosal repair in inflammatory diseases.


Assuntos
Colite , Nanopartículas , Humanos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Intestinos , Mucosa Intestinal/fisiologia , Inflamação , Sulfato de Dextrana/efeitos adversos
4.
Cells ; 11(20)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291162

RESUMO

Tight junctions (TJs) regulate the transit of ions and molecules through the paracellular pathway in epithelial cells. Zonula occludens 2 (ZO-2) is a cytoplasmic TJ protein. Here, we studied the ubiquitination of hZO-2 employing mutants of SUMOylation site K730 present in the GuK domain and the putative ubiquitination residues K759 and K992 located at the GuK domain and proline-rich region, respectively. In immunoprecipitation experiments done with MDCK cells transfected with wild-type (WT) hZO-2 or the ubiquitination-site mutants hZO-2-K759R or -K992R, we observed diminished ubiquitination of the mutants, indicating that residues K759 and K992 in hZO-2 are acceptors for ubiquitination. Moreover, using TUBES, we found that residues K759 and K992 of hZO-2 are targets of K48 polyubiquitination, a signal for proteasomal degradation. Accordingly, compared to WT hZO-2, the half-life of hZO-2 mutants K759R and K992R augmented from 19.9 to 37.3 and 23.3 h, respectively. Instead, the ubiquitination of hZO-2 mutant K730R increased, and its half-life diminished to 6.7 h. The lack of these lysine residues in hZO-2 affects TJ sealing as the peak of TER decreased in monolayers of MDCK cells transfected with any of these mutants. These results highlight the importance of ZO-2 ubiquitination and SUMOylation to maintain a healthy and stable pool of ZO-2 molecules at the TJ.


Assuntos
Sumoilação , Junções Íntimas , Proteína da Zônula de Oclusão-2/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Lisina/metabolismo , Fosfoproteínas/metabolismo , Linhagem Celular , Prolina/metabolismo
5.
Cells ; 10(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578631

RESUMO

Clinical manifestations of coronavirus disease 2019 (COVID-19) in pregnant women are diverse, and little is known of the impact of the disease on placental physiology. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been detected in the human placenta, and its binding receptor ACE2 is present in a variety of placental cells, including endothelium. Here, we analyze the impact of COVID-19 in placental endothelium, studying by immunofluorescence the expression of von Willebrand factor (vWf), claudin-5, and vascular endothelial (VE) cadherin in the decidua and chorionic villi of placentas from women with mild and severe COVID-19 in comparison to healthy controls. Our results indicate that: (1) vWf expression increases in the endothelium of decidua and chorionic villi of placentas derived from women with COVID-19, being higher in severe cases; (2) Claudin-5 and VE-cadherin expression decrease in the decidua and chorionic villus of placentas from women with severe COVID-19 but not in those with mild disease. Placental histological analysis reveals thrombosis, infarcts, and vascular wall remodeling, confirming the deleterious effect of COVID-19 on placental vessels. Together, these results suggest that placentas from women with COVID-19 have a condition of leaky endothelium and thrombosis, which is sensitive to disease severity.


Assuntos
COVID-19/complicações , Placenta/irrigação sanguínea , Placenta/patologia , Complicações Cardiovasculares na Gravidez/etiologia , Complicações Infecciosas na Gravidez/etiologia , Trombose/etiologia , Adulto , Antígenos CD/análise , COVID-19/patologia , COVID-19/virologia , Caderinas/análise , Claudina-5/análise , Endotélio/irrigação sanguínea , Endotélio/patologia , Endotélio/virologia , Feminino , Humanos , Recém-Nascido , Microvasos/patologia , Microvasos/virologia , Gravidez , Complicações Cardiovasculares na Gravidez/patologia , Complicações Cardiovasculares na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/isolamento & purificação , Trombose/patologia , Trombose/virologia , Adulto Jovem , Fator de von Willebrand/análise
6.
Int J Oncol ; 57(4): 905-924, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945372

RESUMO

Tight junctions (TJs) are cell­cell adhesion structures frequently altered by oncogenic transformation. In the present study the role of human papillomavirus (HPV) 16 E7 oncoprotein on the sealing of TJs was investigated and also the expression level of claudins in mouse cervix and in epithelial Madin­Darby Canine Kidney (MDCK) cells. It was found that there was reduced expression of claudins ­1 and ­10 in the cervix of 7­month­old transgenic K14E7 mice treated with 17ß­estradiol (E2), with invasive cancer. In addition, there was also a transient increase in claudin­1 expression in the cervix of 2­month­old K14E7 mice, and claudin­10 accumulated at the border of cells in the upper layer of the cervix in FvB mice treated with E2, and in K14E7 mice treated with or without E2. These changes were accompanied by an augmented paracellular permeability of the cervix in 2­ and 7­month­old FvB mice treated with E2, which became more pronounced in K14E7 mice treated with or without E2. In MDCK cells the stable expression of E7 increased the space between adjacent cells and altered the architecture of the monolayers, induced the development of an acute peak of transepithelial electrical resistance accompanied by a reduced expression of claudins ­1, ­2 and ­10, and an increase in claudin­4. Moreover, E7 enhances the ability of MDCK cells to migrate through a 3D matrix and induces cell stiffening and stress fiber formation. These observations revealed that cell transformation induced by HPV16 E7 oncoprotein was accompanied by changes in the pattern of expression of claudins and the degree of sealing of epithelial TJs.


Assuntos
Claudinas/biossíntese , Papillomavirus Humano 16/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/metabolismo , Junções Íntimas/metabolismo , Neoplasias do Colo do Útero/virologia , Animais , Células Cultivadas , Claudinas/genética , Claudinas/metabolismo , Modelos Animais de Doenças , Cães , Feminino , Papillomavirus Humano 16/isolamento & purificação , Humanos , Camundongos , Camundongos Transgênicos , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
7.
Biochim Biophys Acta Biomembr ; 1862(9): 183278, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240623

RESUMO

The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.


Assuntos
Junções Aderentes/genética , Junções Intercelulares/genética , Neoplasias/genética , Junções Íntimas/genética , Transcrição Gênica , Junções Aderentes/metabolismo , Adesão Celular/genética , Diferenciação Celular/genética , Movimento Celular/genética , Polaridade Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética
8.
Cells ; 8(10)2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569528

RESUMO

The cytotrophoblast of human placenta transitions into an outer multinucleated syncytiotrophoblast (STB) layer that covers chorionic villi which are in contact with maternal blood in the intervillous space. During pregnancy, the Zika virus (ZIKV) poses a serious prenatal threat. STB cells are resistant to ZIKV infections, yet placental cells within the mesenchyme of chorionic villi are targets of ZIKV infection. We seek to determine whether ZIKV can open the paracellular pathway of STB cells. This route is regulated by tight junctions (TJs) which are present in the uppermost portion of the lateral membranes of STB cells. We analyzed the paracellular permeability and expression of E-cadherin, occludin, JAMs -B and -C, claudins -1, -3, -4, -5 and -7, and ZO-1, and ZO-2 in the STB of placentae from ZIKV-infected and non-infected women. In ZIKV-infected placentae, the pattern of expression of TJ proteins was preserved, but the amount of claudin-4 diminished. Placentae from ZIKV-infected women were permeable to ruthenium red, and had chorionic villi with a higher mean diameter and Hofbauer hyperplasia. Finally, ZIKV added to the basolateral surface of a trophoblast cell line reduced the transepithelial electrical resistance. These results suggest that ZIKV can open the paracellular pathway of STB cells.


Assuntos
Biomarcadores/metabolismo , Complicações Infecciosas na Gravidez/virologia , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Trofoblastos/metabolismo , Infecção por Zika virus/metabolismo , Adulto , Linhagem Celular , Feminino , Humanos , Recém-Nascido , Permeabilidade , Gravidez , Trofoblastos/patologia
9.
Ann N Y Acad Sci ; 1397(1): 35-53, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28415133

RESUMO

ZO-2 is a peripheral tight junction protein that belongs to the membrane-associated guanylate kinase protein family. Here, we explain the modular and supramodular organization of ZO-2 that allows it to interact with a wide variety of molecules, including cell-cell adhesion proteins, cytoskeletal components, and nuclear factors. We also describe how ZO proteins evolved through metazoan evolution and analyze the intracellular traffic of ZO-2, as well as the roles played by ZO-2 at the plasma membrane and nucleus that translate into the regulation of proliferation, cell size, and apoptosis. In addition, we focus on the impact of ZO-2 expression on male fertility and on maladies like cancer, cholestasis, and hearing loss.


Assuntos
Apoptose , Proliferação de Células , Expressão Gênica , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-2/metabolismo , Animais , Tamanho Celular , Humanos , Infertilidade Masculina/genética , Masculino , Proteína da Zônula de Oclusão-2/genética
10.
Curr Pharm Des ; 22(35): 5313-5346, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27510485

RESUMO

Ions and molecules move across epithelial barriers by two pathways, the transcellular and the paracellular. The former is taken by lipophilic compounds, or by ions and molecules that move across the plasma membrane through pumps, carriers or exchangers. The second route is regulated by the tight junction (TJ) that through paracellular channels, allows the transport of ions across epithelial barriers. Since, a wide variety of bioactive molecules like peptides, proteins and oligonucleotides cannot use the transcellular route, due to their hydrophilic nature, interest has arisen in devising procedures to open the TJ in a reversible manner for paracellular drug delivery. Here, we describe how different strategies have been devised to enhance the paracellular intestinal absorption of drugs; to open the blood-brain barrier (BBB) to allow the penetration of drugs for the treatment of disorders and tumors of the central nervous system; or to deliver antigens into the subjacent mucosa associated lymphoid tissues, for the development of mucosal vaccines. The strategies described, include the use of peptides, antibodies and miRNAs that target proteins of the apical junctional complex, as well as toxins derived from microorganisms that open the TJ by inducing the contraction of the cortical actomyosin ring. Also, we describe how paracellular absorption, is enhanced by drugs that extract cholesterol from the plasma membrane, surfactants, fatty acids, oligosaccharides, cationic polymers, nitric oxide donors and calcium chelators. Likewise, we explain how the BBB has been opened by employing tumor necrosis factor-α, bradykinin, short chain alkylglycerols, hyperosmotic mannitol and focused ultrasound.


Assuntos
Sistemas de Liberação de Medicamentos , Junções Íntimas/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...