Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Plant Biol (Stuttg) ; 25(2): 296-307, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536116

RESUMO

Deceptive pollination has been reported in the genus Aristolochia, but the floral biology and pollination strategy of A. bianorii, an endemic of the Balearic Islands, have not yet been studied. Here, we investigated floral anthesis, mating system, pollinators and volatile organic compounds (VOCs) emitted by its flowers. Flower buds were marked and monitored daily to define floral stages and their duration. Experimental bagging and hand-pollination were performed to test for autonomous self-pollination, induced self-pollination and cross-pollination. Flowers were collected to analyse the presence of entrapped pollinators. VOCs emitted by flowers were evaluated by means of solid phase microextraction followed by immediate GC-MS. Anthesis lasted between 63 and 96 h, and the species exhibited autonomous self-pollination with moderate inbreeding depression. Pollinators were mainly females of Oscinomorpha longirostris (Diptera; Chloropidae). The number of pollinators inside flowers was affected by floral stage and time of flowering. The most common VOCs were alkanes, oximes, esters, alkenes, cyclic unsaturated hydrocarbons, isocyanates, amides and carboxylic acids. Aristolochia bianorii can set seed by autonomous self-pollination, in contrast to other Aristolochia species, in which both protogyny and herkogamy prevent autonomous self-pollination. However, the species may encourage cross-pollination by attracting female chloropid flies though emission of floral scents that may mimic an oviposition site and, possibly, freshly killed true bugs (i.e. Heteroptera). In conclusion, A. bianorii promotes cross-pollination, but delayed autonomous self-pollination assures reproductive success in the putative absence of pollinators.


Assuntos
Aristolochia , Dípteros , Compostos Orgânicos Voláteis , Animais , Feminino , Masculino , Polinização , Ecossistema , Reprodução , Flores/química , Compostos Orgânicos Voláteis/análise , Biologia
2.
Front Insect Sci ; 3: 1093970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469480

RESUMO

Introduction: Insecticidal RNAi is a targeted pest insect population control measure. The specificity of insecticidal RNAi can theoretically be enhanced by using symbiotic bacteria with a narrow host range to deliver RNAi, an approach termed symbiont-mediated RNAi (SMR), a technology we have previously demonstrated in the globally-invasive pest species Western Flower Thrips (WFT). Methods: Here we examine distribution of the two predominant bacterial symbionts of WFT, BFo1 and BFo2, among genome-sequenced insects. Moreover, we have challenged two non-target insect species with both bacterial species, namely the pollinating European bumblebee, Bombus terrestris, and an insect predator of WFT, the pirate bug Orius laevigatus. Results: Our data indicate a very limited distribution of either symbiont among insects other than WFT. Moreover, whereas BFo1 could establish itself in both bees and pirate bugs, albeit with no significant effects on insect fitness, BFo2 was unable to persist in either species. Discussion: In terms of biosafety, these data, together with its more specific growth requirements, vindicate the choice of BFo2 for delivery of RNAi and precision pest management of WFT.

3.
Front Microbiol ; 13: 883891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875566

RESUMO

Symbiont mediated RNAi (SMR) is a promising method for precision control of pest insect species such as Western Flower Thrips (WFT). Two species of bacteria are known to be dominant symbiotic bacteria in WFT, namely BFo1 and BFo2 (Bacteria from Frankliniella occidentalis 1 and 2), as we here confirm by analysis of next-generation sequence data derived to obtain a reference WFT genome sequence. Our first demonstration of SMR in WFT used BFo2, related to Pantoea, isolated from a domesticated Dutch thrips population. However, for successful use of SMR as a thrips control measure, these bacteria need to successfully colonize different environmental thrips populations. Here, we describe a United Kingdom thrips population that does not harbour BFo2, but does contain BFo1, a species related to Erwinia. Attempts to introduce BFo2 indicate that this bacterium is unable to establish itself in the United Kingdom thrips, in contrast to successful colonization by a strain of BFo1 expressing green fluorescent protein. Fluorescence microscopy indicates that BFo1 occupies similar regions of the thrips posterior midgut and hindgut as BFo2. Bacterial competition assays revealed that a barrier to BFo2 establishing itself in thrips is the identity of the resident BFo1; BFo1 isolated from the United Kingdom thrips suppresses growth of BFo2 to a greater extent than BFo1 from the Dutch thrips that is permissive for BFo2 colonization. The ability of the latter strain of BFo1 to colonize the United Kingdom thrips is also likely attributable to its ability to out-compete the resident BFo1. Lastly, we observed that United Kingdom thrips pre-exposed to the Dutch BFo1 could then be successfully colonized by BFo2. These results indicate, for the first time, that microbial competition and strain differences can have a large influence on how symbiotic bacteria can colonize different populations of an insect species.

4.
Methods Mol Biol ; 2360: 295-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34495522

RESUMO

RNA interference (RNAi) has emerged as a widely used approach for reverse genetic analysis in eukaryotes. In insects, RNAi also has an application in the control of insect pests. Several methods have been developed for delivery of interfering RNA in insects, with varying outcomes for different species. Here we describe how a bacterial symbiont can be exploited for continuous synthesis of interfering double-stranded RNA (dsRNA) in its insect host. This approach, termed symbiont-mediated RNAi (SMR), can overcome problems associated with instability of dietary dsRNA due to action of salivary or foregut nucleases. As insects do not possess RNA-dependent RNA polymerase activity that can amplify and extend RNAi in other organisms, SMR also offers the possibility of long-term systemic RNAi not afforded by single applications of dsRNA to insects by other delivery methods. Here, we describe how SMR can be applied in a globally distributed agricultural pest species, western flower thrips (Frankliniella occidentalis).


Assuntos
Insetos , Interferência de RNA , Animais , Bactérias/genética , Insetos/genética , RNA de Cadeia Dupla/genética , Tisanópteros/genética
5.
Pathogens ; 10(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34578203

RESUMO

Although control efforts are improving, vector-borne diseases remain a global public health challenge. There is a need to shift vector control paradigms while developing new products and programmes. The importance of modifying vector behaviour has been recognised for decades but has received limited attention from the public health community. This study aims to: (1) explore how the use of spatial repellents at sublethal doses could promote public health worldwide; (2) propose new methods for evaluating insecticides for use by the general public; and (3) identify key issues to address before spatial repellents can be adopted as complementary vector control tools. Two field experiments were performed to assess the effects of an insecticidal compound, the pyrethroid transfluthrin, on Aedes albopictus mosquitoes. The first examined levels of human protection, and the second looked at mosquito knockdown and mortality. For the same transfluthrin dose and application method, the percent protection remained high (>80%) at 5 h even though mosquito mortality had declined to zero at 1 h. This result underscores that it matters which evaluation parameters are chosen. If the overarching goal is to decrease health risks, sublethal doses could be useful as they protect human hosts even when mosquito mortality is null.

6.
Arch Toxicol ; 95(6): 2109-2121, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34032869

RESUMO

Phenols are regarded as highly toxic chemicals. Their effects are difficult to study in in vitro systems because of their ambiguous fate (degradation, auto-oxidation and volatility). In the course of in vitro studies of a series of redox-cycling phenols, we found evidences of cross-contamination in several in vitro high-throughput test systems, in particular by trimethylbenzene-1, 4-diol/trimethylhydroquinone (TMHQ) and 2,6-di-tertbutyl-4-ethylphenol (DTBEP), and investigated in detail the physicochemical basis for such phenomenon and how to prevent it. TMHQ has fast degradation kinetics followed by significant diffusion rates of the resulting quinone to adjacent wells, other degradation products being able to air-diffuse as well. DTBEP showed lower degradation kinetics, but a higher diffusion rate. In both cases the in vitro toxicity was underestimated because of a decrease in concentration, in addition to cross-contamination to neighbouring wells. We identified four degradation products for TMHQ and five for DTBEP indicating that the current effects measured on cells are not only attributable to the parent phenolic compound. To overcome these drawbacks, we investigated in detail the physicochemical changes occurring in the course of the incubation and made use of gas-permeable and non-permeable plastic seals to prevent it. Diffusion was greatly prevented by the use of both plastic seals, as revealed by GC-MS analysis. Gas non-permeable plastic seals, reduced to a minimum compounds diffusion as well oxidation and did not affect the biological performance of cultured cells. Hence, no toxicological cross-contamination was observed in neighbouring wells, thus allowing a more reliable in vitro assessment of phenol-induced toxicity.


Assuntos
Hidroquinonas/toxicidade , Oxirredução , Fenóis/toxicidade , Linhagem Celular Tumoral , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Hidroquinonas/química , Fenóis/química , Reprodutibilidade dos Testes
7.
Med Vet Entomol ; 35(2): 187-201, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33103805

RESUMO

Culicoides Latreille (Diptera: Ceratopogonidae) transmit arboviruses affecting wild and domestic ruminants such as bluetongue (BTV) and Schmallenberg virus (SBV). The sub-adult development and lifespan of Culicoides obsoletus s.s. (Meigen), Culicoides circumscriptus Kieffer and Culicoides paolae Boorman were examined at three different temperatures under laboratory conditions. Insects were collected from field between spring and autumn 2015 in two livestock farms located in Majorca (Spain). Gravid females were held individually at 18, 25 or 30 °C. Low temperatures increased the adult lifespan, time to oviposit and rate of development, whereas high temperatures increased the number of eggs, successful pupation and adult emergence as well as the larvae growth rate. The results showed that C. obsoletus s.s. have optimum development at 18 °C, whereas the optimal rearing temperature for C. circumscriptus and C. paolae was under warmer conditions of 25-30 °C. Variations in temperature/humidity and assays with different materials and substrates for oviposition should be considered in future studies. Understanding the requirements of the different species of Culicoides optimizing the results should be of special interest for predicting environmental change effects on these species, in addition to determining the rearing conditions for candidate Culicoides vectors.


Assuntos
Ceratopogonidae/crescimento & desenvolvimento , Laboratórios , Temperatura , Animais , Infecções por Arbovirus/transmissão , Infecções por Arbovirus/veterinária , Bluetongue/transmissão , Ceratopogonidae/fisiologia , Ceratopogonidae/virologia , Vetores de Doenças , Eficiência , Umidade , Insetos Vetores/crescimento & desenvolvimento , Gado , Longevidade , Oviposição , Ruminantes , Estações do Ano , Espanha
8.
Environ Res ; 188: 109837, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798954

RESUMO

Changes in environmental conditions, whether related or not to human activities, are continuously modifying the geographic distribution of vectors, which in turn affects the dynamics and distribution of vector-borne infectious diseases. Determining the main ecological drivers of vector distribution and how predicted changes in these drivers may alter their future distributions is therefore of major importance. However, the drivers of vector populations are largely specific to each vector species and region. Here, we identify the most important human-activity-related and bioclimatic predictors affecting the current distribution and habitat suitability of the mosquito Culex pipiens and potential future changes in its distribution in Spain. We determined the niche of occurrence (NOO) of the species, which considers only those areas lying within the range of suitable environmental conditions using presence data. Although almost ubiquitous, the distribution of Cx. pipiens is mostly explained by elevation and the degree of urbanization but also, to a lesser extent, by mean temperatures during the wettest season and temperature seasonality. The combination of these predictors highlights the existence of a heterogeneous pattern of habitat suitability, with most suitable areas located in the southern and northeastern coastal areas of Spain, and unsuitable areas located at higher altitude and in colder regions. Future climatic predictions indicate a net decrease in distribution of up to 29.55%, probably due to warming and greater temperature oscillations. Despite these predicted changes in vector distribution, their effects on the incidence of infectious diseases are, however, difficult to forecast since different processes such as local adaptation to temperature, vector-pathogen interactions, and human-derived changes in landscape may play important roles in shaping the future dynamics of pathogen transmission.


Assuntos
Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Ecossistema , Humanos , Mosquitos Vetores , Espanha , Febre do Nilo Ocidental/epidemiologia
9.
Colloids Surf B Biointerfaces ; 192: 111106, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32474325

RESUMO

Solanum lycocarpum fruits contain two major glycoalkaloids (GAs), solamargine (SM) and solasonine (SS). These compounds are reported as cytotoxic. However, they have poor water solubility and low bioavailability. To overcome these disadvantages and getting an efficient formulation the current study aimed to develop, characterize, and test the effectiveness of a nanotechnology-based strategy using poly(D,L-lactide) (PLA) nanoparticles functionalized with folate as delivery system of glycoalkaloidic extract (AE) for bladder cancer therapy. The strategic of adding folic acid into nanoformulations can increase the selectivity of the compounds to the cancer cells reducing the side effects. Our results revealed the successful preparation of AE-loaded folate-targeted nanoparticles (NP-F-AE) with particle size around 177 nm, negative zeta potential, polydispersity index <0.20, and higher efficiency of encapsulation for both GAs present in the extract (>85 %). To investigate the cellular uptake, the fluorescent dye coumarin-6 was encapsulated into the nanoparticle (NP-F-C6). The cell studies showed high uptake of nanoparticles by breast (MDA-MB-231) and bladder (RT4) cancer cells, but not for normal keratinocytes cells (HaCaT) indicating the target uptake to cancer cells. The cytotoxicity of nanoparticles was evaluated on RT4 2D culture model showing 2.16-fold lower IC50 than the free AE. Furthermore, the IC50 increased on the RT4 spheroids compared to 2D model. The nanoparticles penetrated homogeneously into the urotheliumof porcine bladder. These results showed that folate-conjugated polymeric nanoparticles are potential carriers for targeted glycoalkaloidic extract delivery to bladder cancer cells.

10.
Health Care Manag Sci ; 23(1): 66-79, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30607802

RESUMO

We study the efficiency of operations management in a hospital from the dynamics of the flow of patients. Our principal aim is to characterize strategic departments and seasonal patterns in a hospital from a complex networks approach. Process mining techniques are developed to track out-patients' pathways along different departments for the purpose of building weekly networks. In these networks, departments act as nodes with multiple out/in-going arrows connecting other departments. Strategic departments are classified into target and critical departments. On the one hand, target departments, which in this study belong to the oncology area, correspond to those affected by new management policies whose impact is to be assessed. On the other hand, critical departments correspond to the most active departments, the hubs of the networks. Using suitable networks parameters, strategic departments are shown to be highly efficient regardless of the season, which naturally translates into a high level of service offered to patients. In addition, our results show conformance with the new objectives concerning target departments. The methodology presented is shown to be successful in evaluating the efficiency of hospital services in order to enhance process performances, and moreover, it is suitable to be implemented in healthcare management systems at a greater scale and the service industry whenever the flow of clients or customers are involved.


Assuntos
Hospitais/estatística & dados numéricos , Ambulatório Hospitalar/estatística & dados numéricos , Pacientes Ambulatoriais/estatística & dados numéricos , Adulto , Mineração de Dados/métodos , Eficiência Organizacional , Humanos , Modelos Estatísticos , Serviço Hospitalar de Oncologia , Avaliação de Processos em Cuidados de Saúde , Estações do Ano
11.
Arch Insect Biochem Physiol ; 103(3): e21645, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31742774

RESUMO

In insect reverse genetics, dietary delivery of interfering RNAs is a practical approach in nonmodel species, such as thrips, whose small size, and feeding behavior restricts the use of other delivery methods. In a laboratory context, an unsuitable diet could confound the interpretation of an RNA interference (RNAi) phenotype, however well-formulated artificial diets can minimize experimental variability, reduce the need for insect handling, and can further be used for roles, such as delivering double-strand RNA (dsRNA)-expressing recombinant bacteria. In this study, artificial diets for oral delivery of dsRNA were developed for two important pest thrips species, western flower thrips (Frankliniella occidentalis) and onion thrips (Thrips tabaci), with the goal of (a) stimulating feeding behavior, (b) supporting optimal growth rates of dsRNA-expressing symbiotic bacteria, and (c) nutritionally supporting the thrips for sufficient periods to observe RNAi phenotypes. The efficacy of artificial diets for ingesting "naked" dsRNA or dsRNA-expressing symbionts and dsRNA delivery via host plant uptake was evaluated. Compared with previously published diet formulations, new combinations based on tryptone, yeast, and soy were superior for enhancing feeding and longevity. However, simply adding "naked" dsRNA to an artificial diet was an unreliable form of RNAi delivery in our hands due to dsRNA degradation. Delivery via host plants was more successful, and the new diet formulation was suitable for symbiont-mediated dsRNA delivery, which we believe is the most convenient approach for large-scale knockdown experiments. This study, therefore, provides alternative methodologies for thrips rearing, dietary RNAi delivery, and insights into the challenges of performing dietary RNAi in nonmodel insects.


Assuntos
Comportamento Alimentar , Controle de Insetos/métodos , Controle Biológico de Vetores/métodos , Interferência de RNA , Tisanópteros , Animais , Bactérias , Insetos Vetores , RNA de Cadeia Dupla
12.
Acta Crystallogr A Found Adv ; 75(Pt 5): 772-776, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31475921

RESUMO

The several mathematical formulations of X-ray diffraction theory facilitate its understanding and use as a materials characterization technique, since one can opt for the simplest formulation that adequately describes the case being studied. As synchrotrons advance, new techniques are developed and there is a need for simple formulations to describe them. One of these techniques is soft resonant X-ray diffraction, in which the X-rays suffer large attenuation due to absorption. In this work, an expression is derived for the X-ray diffraction profiles of reflections where the linear absorption is far greater than primary extinction; in other words, the crystal is superabsorbing. The case is considered of a parallel plate crystal, for which the diffraction profile of the superabsorbing crystal is computed as a function of crystal size normal to the diffraction planes. For thin crystals or those with negligible absorption, the diffraction profile of a superabsorbing crystal coincides with the result of the kinematical theory. For thick crystals, the absorption intrinsic profile is obtained, described by a Lorentzian function and characterized by the absorption intrinsic width. This absorption intrinsic width is proportional to the linear absorption coefficient and its expression is similar to that for the Darwin width, while the absorption intrinsic profile is a special case of the Laue dynamical theory, and it is similar to the Ornstein-Zernike Lorentzian. The formulation of X-ray diffraction of superabsorbing crystals is simple and provides new perspectives for the soft resonant X-ray diffraction technique.

13.
Med Vet Entomol ; 32(4): 443-450, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969158

RESUMO

The Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae), is a highly invasive species and a vector of several viruses of serious concern to public health. Investigating the habitat selection of this species at small to medium scales is essential to the planning of effective prevention and control campaigns. The present group considered detailed data for this species' presence/absence collected at 228 sites on Mallorca Island (Spain) in autumn 2015, 3 years after the first detection of the species on the island. Site occupancy models accounting for false negative detections and imperfect monitoring were used to evaluate the relationships between mosquito presence and habitat variables. In the study area, mosquito presence was negatively associated with altitude, probably as a result of greater human presence at low altitudes near the coast. Moreover, the presence of Ae. albopictus was positively associated with swimming pools as a result of associated gardens, plants and sources of fresh water. These two variables were combined to predict the presence of the species across the entire island.


Assuntos
Aedes/fisiologia , Atividades Humanas , Animais , Ecossistema , Ilhas do Mediterrâneo , Modelos Biológicos , Probabilidade , Espanha , Viagem , Água
14.
J Hazard Mater ; 356: 91-97, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29857226

RESUMO

Advanced oxidation processes are useful methodologies to accomplish abatement of contaminants; however, elucidation of the reaction mechanisms is hampered by the difficult detection of the short-lived primary key species involved in the photocatalytic processes. Nevertheless, herein the combined use of an organic photocatalyst such as triphenylpyrylium (TPP+) and photophysical techniques based on emission and absorption spectroscopy allowed monitoring the photocatalyst-derived short-lived intermediates. This methodology has been applied to the photocatalyzed degradation of different pollutants, such as acetaminophen, acetamiprid, caffeine and carbamazepine. First, photocatalytic degradation of a mixture of the pollutants showed that acetaminophen was the most easily photodegraded, followed by carbamazepine and caffeine, being the abatement of acetamiprid almost negligible. This process was accompanied by mineralization, as demonstrated by trapping of carbon dioxide using barium hydroxide. Then, emission spectroscopy measurements (steady-state and time-resolved fluorescence) allowed demonstrating quenching of the singlet excited state of TPP+. Laser flash photolysis experiments with absorption detection showed that oxidation of contaminants is accompanied by TPP+ reduction, with formation of a pyranyl radical (TPP), that constituted a fingerprint of the redox nature of the occurring process. The relative amounts of TPP detected was also correlated with the efficiency of the photodegradation process.


Assuntos
Acetaminofen/química , Derivados de Benzeno/química , Cafeína/química , Carbamazepina/química , Neonicotinoides/química , Derivados de Benzeno/efeitos da radiação , Luz , Oxirredução , Fotólise
15.
J Hazard Mater ; 342: 633, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28898860

RESUMO

Advanced oxidation processes are useful methodologies to accomplish abatement of contaminants; however, elucidation of the reaction mechanisms is hampered by the difficult detection of the short-lived primary key species involved in the photocatalytic processes. Nevertheless, herein the combined use of an organic photocatalyst such as triphenylpyrylium (TPP+) and photophysical techniques based on emission and absorption spectroscopy allowed monitoring the photocatalyst-derived short-lived intermediates. This methodology has been applied to the photocatalyzed degradation of different pollutants, such as acetaminophen, acetamiprid, caffeine and carbamazepine. First, photocatalytic degradation of a mixture of the pollutants showed that acetaminophen was the most easily photodegraded, followed by carbamazepine and caffeine, being the abatement of acetamiprid almost negligible. This process was accompanied by mineralization, as demonstrated by trapping of carbon dioxide using barium hydroxide. Then, emission spectroscopy measurements (steady-state and time-resolved fluorescence) allowed demonstrating quenching of the singlet excited state of TPP+. Laser flash photolysis experiments with absorption detection showed that oxidation of contaminants is accompanied by TPP+ reduction, with formation of a pyranyl radical (TPP), that constituted a fingerprint of the redox nature of the occurring process. The relative amounts of TPP detected was also correlated with the efficiency of the photodegradation process.

16.
Acta Crystallogr A Found Adv ; 74(Pt 1): 54-65, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269598

RESUMO

The Scherrer equation is a widely used tool to obtain crystallite size from polycrystalline samples. Its limit of applicability has been determined recently, using computer simulations, for a few structures and it was proposed that it is directly dependent on the linear absorption coefficient (µ0) and Bragg angle (θB). In this work, a systematic study of the Scherrer limit is presented, where it is shown that it is equal to approximately 11.9% of the extinction length. It is also shown that absorption imposes a maximum value on it and that this maximum is directly proportional to sin θB/µ0.

17.
Insect Sci ; 25(3): 454-466, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27900825

RESUMO

This study examines how the dynamics of fungus-insect interactions can be modulated by temperature. The wax moth, Galleria mellonella, is a well-studied and important model insect whose larvae in the wild develop optimally at around 34 °C in beehives. However, surprisingly little research on wax moths has been conducted at relevant temperatures. In this study, the entomopathogenic fungus Metarhizium robertsii inflicted rapid and substantial mortality on wax moth larvae maintained at a constant temperature of 24 °C, but at 34 °C a 10 fold higher dose was required to achieve an equivalent mortality. The cooler temperature favored fungal pathogenicity, with condial adhesion to the cuticle, germination and hemocoel invasion all significantly enhanced at 24 °C, compared with 34 °C. The wax moth larvae immune responses altered with the temperature, and with the infective dose of the fungus. Enzyme-based immune defenses (lysozyme and phenoloxidase) exhibited enhanced activity at the warmer temperature. A dramatic upregulation in the basal expression of galiomicin and gallerimycin was triggered by cooling, and this was augmented in the presence of the fungus. Profiling of the predominant insect epicuticular fatty acids revealed a 4-7 fold increase in palmetic, oleic and linoleic acids in larvae maintained at 24 °C compared with those at 34 °C, but these failed to exert fungistatic effects on topically applied fungus. This study demonstrates the importance of choosing environmental conditions relevant to the habitat of the insect host when determining the dynamics and outcome of insect/fungus interactions, and has particular significance for the application of entomopathogens as biocontrol agents.


Assuntos
Interações Hospedeiro-Patógeno , Metarhizium/fisiologia , Mariposas/microbiologia , Controle Biológico de Vetores , Animais , Defensinas/metabolismo , Ácidos Graxos/fisiologia , Monofenol Mono-Oxigenase/metabolismo , Muramidase/metabolismo , Esporos Fúngicos/fisiologia
18.
Med Vet Entomol ; 32(2): 216-225, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29205857

RESUMO

This research contributes to knowledge of the basic bionomic parameters of vector and non-vector Culicoides species. Field-collected gravid C. imicola and Obsoletus complex showed the longest lifespans in laboratory conditions. Culicoides paolae and C. circumscriptus seemed to be the most suitable species for laboratory rearing in view of their high oviposition rates, short lifecycles, long adult lifespans and female-biased sex ratios.


Assuntos
Ceratopogonidae/fisiologia , Insetos Vetores/fisiologia , Características de História de Vida , Animais , Vírus Bluetongue/fisiologia , Feminino , Gado , Longevidade , Oviposição
19.
Pigment Cell Melanoma Res ; 30(4): 386-401, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28378380

RESUMO

Melanins (eumelanin and pheomelanin) are synthesized in insects for several purposes including cuticle sclerotization and color patterning, clot formation, organogenesis, and innate immunity. Traditional views of insect immunity detail the storage of pro-phenoloxidases inside specialized blood cells (hemocytes) and their release upon recognition of foreign bodies. Activated phenoloxidases convert monophenols into reactive quinones in a two-step enzymatic reaction, and until recently, the mechanism of tyrosine hydroxylation remained a mystery. Herein, we present our interpretations of these enzyme-substrate complexes. The resultant melanins are deposited onto the surface of microbes to immobilize, agglutinate, and suffocate them. Phenoloxidase activity and melanin production are not limited to the blood (hemolymph) or cuticle, as recent evidence points to more diverse, sophisticated interactions in the gut and with the resident symbionts. This review offers insight into the somewhat neglected areas of insect melanogenesis research, particularly in innate immunity, its role in beneficial insects such as pollinators, the functional versatility of phenoloxidases, and the limitations of common experimental approaches that may impede progress inadvertently.


Assuntos
Insetos/metabolismo , Melaninas/biossíntese , Sequência de Aminoácidos , Animais , Bactérias/metabolismo , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Trato Gastrointestinal/enzimologia , Hemócitos/metabolismo , Melaninas/química
20.
EFSA J ; 15(1): e04687, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625275

RESUMO

Highly pathogenic avian influenza (HPAI) H5N8 is currently causing an epizootic in Europe, infecting many poultry holdings as well as captive and wild bird species in more than 10 countries. Given the clear clinical manifestation, passive surveillance is considered the most effective means of detecting infected wild and domestic birds. Testing samples from new species and non-previously reported areas is key to determine the geographic spread of HPAIV H5N8 2016 in wild birds. Testing limited numbers of dead wild birds in previously reported areas is useful when it is relevant to know whether the virus is still present in the area or not, e.g. before restrictive measures in poultry are to be lifted. To prevent introduction of HPAIV from wild birds into poultry, strict biosecurity implemented and maintained by the poultry farmers is the most important measure. Providing holding-specific biosecurity guidance is strongly recommended as it is expected to have a high impact on the achieved biosecurity level of the holding. This is preferably done during peace time to increase preparedness for future outbreaks. The location and size of control and in particular monitoring areas for poultry associated with positive wild bird findings are best based on knowledge of the wider habitat and flight distance of the affected wild bird species. It is recommended to increase awareness among poultry farmers in these established areas in order to enhance passive surveillance and to implement enhanced biosecurity measures including poultry confinement. There is no scientific evidence suggesting a different effectiveness of the protection measures on the introduction into poultry holdings and subsequent spread of HPAIV when applied to H5N8, H5N1 or other notifiable HPAI viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...