Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068050

RESUMO

Luminescent inorganic materials are used in several technological applications such as light-emitting displays, white LEDs for illumination, bioimaging, and photodynamic therapy. Usually, inorganic phosphors (e.g., complex oxides, silicates) need high temperatures and, in some cases, specific atmospheres to be formed or to obtain a homogeneous composition. Low ionic diffusion and high melting points of the precursors lead to long processing times in these solid-state syntheses with a cost in energy consumption when conventional heating methods are applied. Microwave-assisted synthesis relies on selective, volumetric heating attributed to the electromagnetic radiation interaction with the matter. The microwave heating allows for rapid heating rates and small temperature gradients yielding homogeneous, well-formed materials swiftly. Luminescent inorganic materials can benefit significantly from the microwave-assisted synthesis for high homogeneity, diverse morphology, and rapid screening of different compositions. The rapid screening allows for fast material investigation, whereas the benefits of enhanced homogeneity include improvement in the optical properties such as quantum yields and storage capacity.

2.
Dalton Trans ; 49(14): 4518-4527, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32195518

RESUMO

The performance of impurity doped luminescent materials, or phosphors, depends on the composition and crystallinity of the host compound, as well as on the distribution and valence state of the dopant ions. This is particularly true for persistent phosphors, where both luminescence centers and charge trapping defects are required. Here we show that splitting the synthesis procedure in two separate steps offers a simple way to obtain efficient persistent phosphors which are superior to phosphors prepared via a conventional solid state synthesis using a single step. The storage capacity of the persistent phosphor benefits from using a microwave assisted solid state synthesis (MASS) to achieve superior compositional homogeneity, followed by a short heat treatment in a reducing atmosphere to reduce the activators. In this work, the approach is demonstrated for the efficient blue-emitting Eu2+,Dy3+ co-doped Sr2MgSi2O7 persistent phosphor. The enhanced ionic diffusion during the MASS not only improves the homogeneity and dopant distribution, but also allows the phosphor to be obtained in considerably shorter times (ca. 25 minutes). The storage capacity of the as-obtained phosphors prepared by MASS is slightly higher than those obtained by the conventional solid-state method. Cathodoluminescence (CL) measurements evidenced however the existence of a large fraction of unreduced europium activators. Using a short reducing step at 900 °C, the Eu3+ emission was almost fully suppressed in CL and as a consequence, the storage capacity of the MASS-obtained material showed a ten fold increase, confirming the benefit of decoupling compositional homogeneity and the dopant reduction step for phosphor synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...